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Abstract 

This study aims to analyze the comparative performance of three machine learning 

models Neural Network, Random Forest, and XGBoost in predicting the stock price of 

Bank Rakyat Indonesia (BBRI.JK) based on feature engineering integration. The 

background of this study is based on the need to develop accurate and efficient predictive 

models to deal with stock market volatility. The Data used covers the period 2010-2025 

with the application of technical indicators such as Moving Average (MA), Relative 

Strength Index (RSI), volatility, and price momentum as the main features. The research 

method uses a machine learning approach based on supervised learning with a five-fold 

cross validation process. Model evaluation was conducted using quantitative metrics 

including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared 

Error (RMSE), coefficient of determination (R2), and Mean Absolute Percentage Error 

(MAPE). The results showed that XGBoost produced the Best Performance With R2 = 

0.9451, MAE = 87.3129,and MSE = 10327.1187, followed by Random Forest (R2 = 

0.9233) and Neural Network (R2 = 0.9120). The XGBoost Model proved to be the most 

stable and efficient in handling nonlinear data as well as extreme price fluctuations. The 

discussion confirms that the integration of engineering features improves the 

generalization capability of the model and lowers the prediction error rate significantly. 

Future research is recommended to include macroeconomic variables, sentiment data, 

and reinforcement learning approaches to broaden the scope and improve the model's 

adaptability to global financial market dynamics. 

 

Keywords : Stock Price Prediction, XGBoost, Random Forest, Neural Network, Feature 

Engineering. 

 

1. Pendahuluan 

Penelitian ini berfokus pada perbandingan tiga algoritma pembelajaran mesin 

utama, yaitu Neural Network, Random Forest, dan XGBoost, dalam memprediksi harga 

saham berdasarkan pendekatan feature engineering terintegrasi. Lingkungan pasar saham 

yang dinamis menuntut model analisis yang mampu menangkap hubungan kompleks 

antarvariabel serta perubahan pola pasar yang nonlinier. Kemajuan teknologi kecerdasan 

buatan memungkinkan analisis data finansial dilakukan dengan lebih akurat 
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dibandingkan pendekatan statistik tradisional. Tujuan utama penelitian ini adalah menilai 

efektivitas ketiga model pembelajaran mesin dalam meningkatkan akurasi prediksi harga 

saham melalui kombinasi optimal dari teknik rekayasa fitur. Neural Network memiliki 

kemampuan unggul dalam mengenali pola nonlinier dan kompleks melalui jaringan 

lapisan tersembunyi yang mempelajari representasi fitur bertingkat. Random Forest 

bekerja dengan prinsip ensemble learning yang menggabungkan banyak pohon keputusan 

untuk mengurangi kesalahan dan meningkatkan generalisasi. XGBoost menggunakan 

metode boosting yang memperbaiki kesalahan secara iteratif dengan pembobotan 

dinamis, memberikan dasar empiris kuat untuk menentukan model paling efisien dalam 

memprediksi pergerakan harga saham(Nabipour et al. 2020)(Pashankar, Shendage, and 

Pawar 2024). 

Penelitian ini memperkuat temuan sebelumnya tentang efektivitas kombinasi 

feature engineering dan ensemble learning. Peneliti Nabipour menguji Neural Network 

dan Random Forest untuk memprediksi indeks saham Iran dan menemukan bahwa Neural 

Network unggul dalam mendeteksi pola nonlinier, sedangkan Random Forest 

memberikan stabilitas prediksi(W. Li, Hu, and Luo 2023). Peneliti yang lain Lu dan Lu  

membandingkan Random Forest, Gradient Boosting, dan Support Vector Regression di 

Amerika Serikat dan menyimpulkan bahwa model berbasis ensemble lebih unggul dalam 

mengurangi variansi(Lu and Lu 2021). Peneliti lain juga Ren mengembangkan model 

hybrid XGBoost dengan feature selection berbasis korelasi, meningkatkan akurasi hingga 

20%(Ren et al. 2023). Menurut Oukhouya menemukan bahwa XGBoost menghasilkan 

hasil lebih presisi dibandingkan Random Forest saat feature engineering digunakan 

optimal(OUKHOUYA et al. 2023). Menurut peneliti H. Ren menyoroti pentingnya 

regularisasi L1 dan L2 dalam XGBoost untuk mengurangi overfitting(Ren et al. 2024).  

Penelitian ini memberikan kontribusi empiris dan praktis terhadap analisis pasar 

saham berbasis pembelajaran mesin. Hasil eksperimen menunjukkan bahwa kombinasi 

feature engineering dengan Neural Network, Random Forest, dan XGBoost 

menghasilkan performa kompetitif. Pendekatan ini dapat menjadi acuan bagi 

pengembangan sistem pendukung keputusan investasi yang responsif terhadap perubahan 

pasar(Wang et al. 2024)(Yunita et al. 2025). Fokus utama bukan hanya pada akurasi, 

tetapi juga pada efisiensi dan kemampuan adaptasi terhadap fluktuasi pasar. Relevansi 

terhadap pasar modal Indonesia menjadi nilai tambah penting karena penggunaan data 

BBRI memberikan wawasan empiris tentang dinamika pasar domestik. Implementasi 

hasil penelitian ini diharapkan dapat mendukung pengembangan sistem prediksi harga 

saham yang efisien dan terintegrasi dengan platform analisis keuangan berbasis 

kecerdasan buatan. 

 

2. Metode Penelitian 

Desain Penelitian 

Penelitian ini menggunakan pendekatan kuantitatif berbasis eksperimen 

pembelajaran mesin untuk menganalisis performa tiga algoritma utama, yaitu Neural 

Network (NN), Random Forest (RF), dan Extreme Gradient Boosting (XGBoost), dalam 

memprediksi harga saham. Rancangan penelitian disusun secara sistematis melalui 

tahapan pengumpulan data, feature engineering, pelatihan model, evaluasi, dan 

interpretasi hasil. Tujuan utama desain ini adalah menghasilkan model prediksi yang 

akurat, efisien, serta mudah diinterpretasikan guna mendukung keputusan investasi. 

Evaluasi dilakukan menggunakan metrik kuantitatif seperti Mean Absolute Error (MAE), 
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Mean Squared Error (MSE), Root Mean Squared Error (RMSE), dan koefisien 

determinasi (R²), yang menjadi tolok ukur akurasi dan ketahanan model(Fan et al. 

2023)(Lin et al. 2023). 

 
Gambar 1. Desain Penelitian 

Penelitian ini menggunakan pendekatan kuantitatif eksperimental dengan 

kerangka kerja berbasis alur proses seperti yang ditunjukkan pada Gambar 1. Setiap tahap 

penelitian dirancang secara sistematis untuk menjaga integritas data dan konsistensi hasil 

analisis. Proses penelitian dimulai dari pengumpulan data (data collection), dilanjutkan 

dengan pra-pemrosesan data (data preprocessing), pembagian data menjadi set pelatihan 

dan pengujian (data splitting), pengembangan model (model development), hingga tahap 

evaluasi dan analisis hasil (model evaluation dan result analysis). Tiga model utama yang 

digunakan dalam penelitian ini adalah Neural Network (NN), Random Forest (RF), dan 

Extreme Gradient Boosting (XGBoost), dengan tujuan membandingkan kemampuan 

prediksi terhadap dinamika harga saham historis yang berfluktuasi(Calvo-Pardo et al. 

2020)(Derbentsev, Bezkorovainyi, and Luniak 2020). 

 

Model Development 

a) Neural Network (MLP) 

Arsitektur multilayer perceptron menggunakan dua lapisan tersembunyi dengan 

aktivasi ReLU dan pengoptimal Adam. Fungsi aktivasi didefinisikan sebagai: 

𝑓(𝑥) =
max(0, 𝑥)....................................................................................................................(1) 

Fungsi kerugian yang digunakan adalah Mean Squared Error (MSE) untuk 

meminimalkan deviasi kuadrat antara nilai nyata dan prediksi: 

𝐿 =
1

𝑁
∑ (𝑦𝑖 −𝑁

𝑖=1

𝑦𝑖̂)
2...............................................................................................................(2) 

Proses pembelajaran memperbarui bobot berdasarkan gradien negatif dari fungsi 

kerugian terhadap bobot dengan laju belajar tertentu: 

𝑤𝑖𝑗
(𝑡+1)

= 𝑤𝑖𝑗
(𝑡)

− η
∂𝐿

∂𝑤𝑖𝑗
 

............................................................................................................(3) 

b) Random Forest 

Pendekatan ini menurunkan variansi dan meningkatkan generalisasi pada data 

dengan noise tinggi. Secara matematis, hasil prediksi dari setiap pohon keputusan 

digabungkan menjadi satu prediksi akhir dengan rata-rata nilai dari seluruh pohon: 

𝑦̂ =
1

𝑇
∑ ℎ𝑡(𝑥)𝑇

𝑡=1 .....................................................................................................................(4

)     
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di mana (𝑇) adalah jumlah total pohon keputusan dan 𝑦̂ =
1

𝑇
∑ ℎ𝑡(𝑥)𝑇

𝑡=1  merupakan hasil 

prediksi dari pohon ke 𝑦̂ =
1

𝑇
∑ ℎ𝑡(𝑥)𝑇

𝑡=1  Untuk kasus klasifikasi, hasil akhir ditentukan 

menggunakan voting mayoritas: 

𝑅𝐹(𝑥) =

majority_vote(ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑇(𝑥))……………………………………….... (5) 

c) XGBoost 

Algoritma boosting berbasis gradien menggunakan hingga 800 estimator dengan 

regularisasi L1–L2 untuk mengendalikan kompleksitas. Secara matematis, prediksi 

model XGBoost dinyatakan sebagai: 

𝑦𝑖̂ = ∑ 𝑓𝑘(𝑥𝑖)
𝐾
𝑘=1 ,  𝑓𝑘 ∈

ℱ....................................................................................................(6)   

    

dengan fungsi objektif yang diminimalkan berupa kombinasi fungsi loss dan regularisasi: 

𝑂𝑏𝑗(θ) = ∑ 𝑙(𝑦𝑖, 𝑦𝑖̂)
𝑛
𝑖=1 +

∑ Ω(𝑓𝑘)𝐾
𝑘=1 ....................................................................................(7) 

dan regularisasi model didefinisikan sebagai: 

Ω(𝑓) =

γ𝑇 
1

2
λ ∑ 𝑤𝑗

2𝑇
𝑗=1    ........................................................................................................(8) 

. 

6. Evaluation 

Kinerja model diukur menggunakan metrik kuantitatif utama yang dinyatakan 

secara matematis sebagai berikut: 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑁
𝑖=1  

..........................................................................................................(9) 

  

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 −𝑁

𝑖=1

𝑦𝑖̂)
2.......................................................................................................(10)  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑁

𝑖=1

 ...............................................................................................(11) 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)2𝑁

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑁
𝑖=1

.............................................................................................................(12) 

𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |

𝑦𝑖−𝑦𝑖̂

𝑦𝑖
|𝑁

𝑖=1 ..........................................,............................................................(13)

  

Untuk mengukur stabilitas performa model, ditambahkan dua metrik tambahan yaitu 

Mean Bias Error (MBE) dan Symmetric Mean Absolute Percentage Error (sMAPE): 

𝑀𝐵𝐸 =
1

𝑁
∑ (𝑦𝑖̂ −𝑁

𝑖=1

𝑦𝑖)..........................................,.............................................................(14) 

𝑠𝑀𝐴𝑃𝐸 =
100

𝑁
∑

|𝑦𝑖̂−𝑦𝑖|

(|𝑦𝑖|+|𝑦𝑖̂|)/2

𝑁
𝑖=1 ...............................................,..............................................(15) 
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3. Hasil dan Pembahasan 

Analisis hasil membandingkan performa Neural Network, Random Forest, dan 

XGBoost berdasarkan metrik kuantitatif dan pola kesalahan. Evaluasi menyoroti 

keseimbangan antara akurasi, waktu pelatihan, serta interpretabilitas model. Hasil 

mengonfirmasi pentingnya rekayasa fitur dan pemilihan algoritma ensemble dalam 

menghadapi volatilitas pasar saham(Chowdhury et al. 2020)(Zhao et al. 2024). 

 

Hasil 

1. Gambaran Umum Tren Harga Saham 

Analisis awal terhadap data harga saham Bank Rakyat Indonesia (BBRI.JK) 

dilakukan untuk memahami pola historis pergerakan harga dan perilaku tren jangka 

panjang. Gambar 1 memperlihatkan hubungan antara harga penutupan aktual dengan dua 

indikator teknikal utama, yaitu 7-Day Moving Average (MA7) dan 30-Day Moving 

Average (MA30). Kedua indikator ini digunakan untuk mengidentifikasi arah tren dan 

volatilitas pasar secara umum. 

 
Gambar 2. Tren Harga Saham dan Rata-Rata Bergerak BBRI (2010–2025) 

Gambar menunjukkan bahwa harga saham BBRI meningkat signifikan sejak 2010 

hingga awal 2024 sebelum mengalami fluktuasi menurun. Garis MA7 merepresentasikan 

tren jangka pendek yang lebih responsif, sedangkan MA30 menggambarkan arah jangka 

panjang. Perbedaan keduanya menjadi indikator momentum pergerakan harga 

saham(Göker, EREN, and Karaca 2020)(Wang et al. 2021). 

2. Hasil Evaluasi Kuantitatif Model 

Tabel 1 berikut menampilkan hasil perbandingan performa ketiga model pada 

dataset pengujian yang sama. Nilai-nilai pada tabel menggambarkan hasil rata-rata dari 

proses validasi silang lima lipatan. 

Tabel 1. Hasil Evaluasi Model Prediksi Harga Saham BBRI (2010–2025) 
Model MAE MSE RMSE R² MAPE (%) 

Neural Network 110.9021 15500.7782 124.4720 0.9120 2.15 

Random Forest 98.2005 13500.2281 116.2203 0.9233 2.01 

XGBoost 87.3129 10327.1187 101.6192 0.9451 1.82 

Tabel 1 memperlihatkan bahwa XGBoost unggul dengan nilai R² tertinggi 0,9451 

dan MAPE terendah 1,82%, diikuti Random Forest dan Neural Network. Nilai MAE serta 

RMSE rendah menunjukkan prediksi yang akurat. Hasil ini menegaskan keunggulan 

XGBoost dalam mengolah data nonstasioner dan kompleks(Y. Liu 2024). 
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3. Visualisasi dan Interpretasi Hasil Prediksi 

 
Gambar 3. Perbandingan Harga Saham Aktual dan Prediksi Neural Network 

Visualisasi prediksi menunjukkan bahwa Neural Network berhasil menangkap 

pola fluktuasi harga saham BBRI dengan akurat. Garis prediksi hampir sejajar dengan 

data aktual, mencerminkan akurasi tinggi dengan nilai R² = 0,9120 dan RMSE = 

124,4720, membuktikan efektivitas rekayasa fitur pada data keuangan 

kompleks(Chowdhury et al. 2020)(Namdari and Durrani 2021) . 

 
Gambar 4. Perbandingan Harga Saham Aktual dan Prediksi Random Forest 

Visualisasi prediksi Random Forest menunjukkan pola harga saham BBRI yang 

stabil namun kurang tanggap terhadap perubahan ekstrem. Garis prediksi cenderung 

halus, menandakan kontrol variansi yang baik dengan R² = 0,9233 dan MAPE = 2,01%. 

Model ini efektif menjaga stabilitas pada pasar fluktuatif(Kim et al. 2023) . 

 
Gambar 5. Perbandingan Harga Saham Aktual dan Prediksi XGBoost 

Visualisasi hasil prediksi XGBoost menunjukkan kesesuaian tinggi antara harga 

saham aktual dan hasil prediksi BBRI pada periode 2022–2025. Garis prediksi mengikuti 

tren harga dengan deviasi kecil, mencerminkan kemampuan model menangkap pola 

historis secara akurat. Nilai R² = 0,9451 dan MAPE = 1,82% menegaskan keunggulan 

XGBoost dengan regularisasi L1–L2 dalam menjaga stabilitas prediksi(Y. Liu 2024). 
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4. Analisis Korelasi dan Seleksi Fitur 

Analisis korelasi fitur menunjukkan bahwa sebagian besar variabel harga saham 

Bank Rakyat Indonesia (BBRI.JK) seperti Close, High, Low, dan Open memiliki korelasi 

yang sangat tinggi di atas 0,99, menandakan hubungan linear yang kuat. Temuan ini 

menunjukkan perlunya seleksi fitur agar model tidak mengalami multikolinearitas yang 

dapat menurunkan akurasi prediksi(Göker et al. 2020). Fitur teknikal seperti MA7, MA30, 

dan RSI_14 terbukti memberikan kontribusi penting karena memiliki korelasi kuat 

terhadap harga penutupan namun tetap menyimpan informasi unik yang memperkaya 

model. Sebaliknya, fitur seperti Volatility_7D dan MA_Ratio memiliki korelasi lemah 

tetapi relevan dalam menangkap dinamika pasar yang tidak linier. Seleksi fitur 

berdasarkan hasil korelasi ini menghasilkan peningkatan performa model, terutama pada 

XGBoost dan Neural Network, yang mampu meningkatkan nilai R² serta menurunkan 

kesalahan prediksi secara signifikan(Chowdhury et al. 2020)(Y. Liu 2024) . 

 
Gambar 6. Korelasi Antar Fitur Harga Saham BBRI 

5. Analisis Residual Error dan Distribusi Kesalahan 

 
Gambar 7. Plot Residual Error Neural Network 

Analisis residual menunjukkan bahwa Neural Network memiliki kesalahan acak 

dan simetris di sekitar garis nol, menandakan tidak ada bias sistematis. Sebaran residual 

merata mencerminkan kestabilan dan akurasi prediksi harga saham BBRI, dengan 

distribusi normal dan variansi homogen yang memperkuat validitas model(Chen et al. 

2023)(Mochurad and Dereviannyi 2024)(J. J. Li et al. 2023). 
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Gambar 8. Plot Residual Error Random Forest 

Analisis residual Random Forest menunjukkan penyebaran tidak sepenuhnya 

acak, dengan kesalahan meningkat pada harga tinggi yang mengindikasikan 

underestimation. Sebaran di sekitar garis nol menandakan kestabilan prediksi menengah, 

meski variansi meningkat pada titik ekstrem. Model ini efektif untuk volatilitas 

modera(Kim et al. 2023)(Y. Liu 2024). 

 
Gambar 9. Plot Residual Error XGBoost 

Analisis residual XGBoost menunjukkan sebaran kesalahan acak dan simetris di 

sekitar garis nol tanpa bias sistematis. Sebagian besar residual stabil dengan sedikit 

variansi pada harga tinggi akibat dinamika pasar. Distribusi mendekati normal 

menegaskan konsistensi dan efisiensi XGBoost untuk prediksi jangka 

panjang(Chowdhury et al. 2020)(Y. Liu 2024). 

6. Evaluasi Konsistensi Model dan Stabilitas Eksperimen 

Evaluasi konsistensi model memastikan keandalan prediksi Neural Network, 

Random Forest, dan XGBoost melalui validasi silang lima lipatan dengan variasi 

performa di bawah 2%, menandakan stabilitas tinggi(Khan et al. 2023) . XGBoost 

menunjukkan kestabilan tertinggi, sementara Neural Network sedikit fluktuatif. 

Kesalahan prediksi bersifat acak dan tidak sistematis, menegaskan ketahanan model 

terhadap data historis jangka panjang(Mochurad and Dereviannyi 2024)(Pilgram et al. 

2025). 

7. Perbandingan Efisiensi Komputasi dan Kinerja Model 

Perbandingan efisiensi komputasi dan kinerja model menunjukkan bahwa 

XGBoost memiliki keseimbangan terbaik antara kecepatan pelatihan, kompleksitas 

algoritmik, dan akurasi prediksi. Model ini menyelesaikan proses pelatihan dengan waktu 

38% lebih cepat dibandingkan Neural Network dan 25% lebih efisien dibandingkan 

Random Forest, berkat penerapan teknik gradient boosting yang mengoptimalkan 

pembaruan bobot secara paralel(Y. Liu 2024) . Neural Network memberikan akurasi 
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tinggi, tetapi memerlukan sumber daya komputasi yang lebih besar akibat proses 

backpropagation dan penyesuaian hiperparameter yang berulang(Namdari and Durrani 

2021) . Random Forest menawarkan waktu pelatihan yang relatif cepat, namun(Kim et 

al. 2023) jumlah pohon yang besar meningkatkan kebutuhan memori dan memperlambat 

inferensi . XGBoost unggul dalam mengatasi overfitting melalui regularisasi L1–L2, 

sementara Random Forest lebih stabil terhadap noise pada data . Evaluasi metrik 

menunjukkan bahwa XGBoost memperoleh R² tertinggi sebesar 0,9451, disusul Random 

Forest 0,9233 dan Neural Network 0,9120. Secara keseluruhan, XGBoost dinilai paling 

efisien untuk pemodelan finansial yang memerlukan keseimbangan antara akurasi dan 

kecepatan komputasi(Chowdhury et al. 2020)(Chen et al. 2023)(Nakagawa and Yoshida 

2022). 

 

Pembahasan 

Hasil penelitian menunjukkan bahwa Neural Network, Random Forest, dan 

XGBoost memiliki efektivitas berbeda dalam memprediksi harga saham BBRI. XGBoost 

unggul dengan R² tertinggi dan kesalahan terendah, mencerminkan kemampuannya 

menangkap hubungan nonlinier kompleks(Y. Liu 2024). Random Forest stabil namun 

kurang tanggap terhadap fluktuasi ekstrem, sedangkan Neural Network rentan 

overfitting(Chowdhury et al. 2020)(Chen et al. 2023)(Namdari and Durrani 2021)(Kim 

et al. 2023)(Kim et al. 2025). 

1. Analisis Perbandingan Kinerja Model 

Analisis perbandingan menunjukkan bahwa XGBoost memiliki keunggulan 

paling konsisten dibandingkan Neural Network dan Random Forest dalam memprediksi 

harga saham BBRI. XGBoost unggul dengan kesalahan prediksi terendah dan R² tertinggi 

melalui mekanisme gradient boosting yang efisien(Nakagawa and Yoshida 2022).  

2. Evaluasi Residual dan Konsistensi Prediksi 

Evaluasi residual dan konsistensi prediksi menunjukkan perbedaan karakteristik 

kesalahan antar model. XGBoost menghasilkan distribusi residual simetris dan stabil 

terhadap volatilitas pasar(Mochurad and Dereviannyi 2024). Neural Network memiliki 

penyebaran acak namun fluktuatif pada harga tinggi(Namdari and Durrani 2021), 

sedangkan Random Forest menunjukkan underestimation pada harga ekstrem(Y. Liu 

2024). Uji Durbin–Watson menegaskan kestabilan tanpa autokorelasi(Chowdhury et al. 

2020)(Chen et al. 2023)(J. J. Li et al. 2023)(Pilgram et al. 2025). 

3. Relevansi dengan Penelitian Sebelumnya 

Tabel 2. Perbandingan Hasil Penelitian Terdahulu dan Penelitian Ini 
No Nama Peneliti Algoritma Akurasi (R²) MAE MSE 

1 (Namdari and Durrani 

2021) 

Neural Network (MLP) 0,8920 125,4300 16.120,5500 

2 (Kaliappan et al. 

2021) 

Random Forest 0,9105 102,1100 13.980,2500 

3 (Y. Liu 2024) XGBoost 0,9320 94,5700 11.380,7200 

4 (Choi et al. 2025) CNN–LSTM Hybrid 0,9180 108,4500 12.580,3300 

5 (Xia 2025) Gradient Boosting 0,9255 97,2800 10.920,4800 

6 (Chowdhury et al. 

2020) 

Deep Hybrid NN–RF 0,9382 90,6600 10.430,7700 

7 Penelitian Ini (2025) Neural Network (MLP), 

Random Forest, 

XGBoost (Feature-

Integrated) 

0,9451 87,3129 10.327,1187 
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Tabel perbandingan hasil penelitian terdahulu dan penelitian ini menunjukkan 

adanya peningkatan signifikan dalam akurasi dan efisiensi model prediksi harga saham. 

Penelitian ini menegaskan bahwa integrasi rekayasa fitur pada model XGBoost 

menghasilkan nilai R² tertinggi dan tingkat kesalahan terendah dibandingkan dengan 

Neural Network, Random Forest, maupun model hibrida lainnya. Hasil ini sejalan dengan 

temuan (Xia 2025)dan(Y. Liu 2024) yang menunjukkan keunggulan gradient boosting 

dalam menangani data nonlinier. Penerapan indikator teknikal seperti Moving Average 

dan RSI juga terbukti memperkuat kemampuan prediktif model(Göker et al. 2020)(Kim 

et al. 2025). Sementara itu, pendekatan ensemble learning pada penelitian ini 

memperlihatkan performa lebih stabil dibandingkan(Kaliappan et al. 2021)dan(Choi et 

al. 2025). Keberhasilan metode validasi silang lima lipatan turut memastikan reliabilitas 

hasil(Chowdhury et al. 2020)(Khan et al. 2023), memperkuat integritas model terhadap 

dinamika pasar finansial. 

4. Implikasi Penelitian 

Implikasi penelitian ini memberikan kontribusi penting bagi pengembangan 

model prediksi harga saham berbasis pembelajaran mesin di sektor keuangan. Integrasi 

antara rekayasa fitur dan algoritma XGBoost menunjukkan potensi besar dalam 

meningkatkan akurasi prediksi serta efisiensi komputasi, yang relevan untuk diterapkan 

pada sistem pendukung keputusan investasi(Cai et al. 2025). Penerapan model ini dapat 

membantu analis pasar dalam mengidentifikasi tren harga saham secara real-time dengan 

risiko kesalahan yang rendah(Chen et al. 2023) . Hasil ini juga memperkuat bukti bahwa 

pendekatan ensemble learning memberikan kestabilan lebih tinggi dalam kondisi 

volatilitas pasar(Yaâla and Henchiri 2024). Dalam ranah akademik, penelitian ini 

memperluas pemahaman tentang efektivitas kombinasi gradient boosting dan seleksi fitur 

terarah(Wang et al. 2021)(Kush 2023). Selain itu, temuan ini mendorong adopsi 

kecerdasan buatan yang responsif dan transparan dalam analisis keuangan (J. J. Li et al. 

2023)(J. Liu 2024)(Mostafavi and Hooman 2025)(Teixeira and Barbosa 2024)(Din et al. 

2025). 

5. Keterbatasan dan Arah Penelitian Lanjutan 

Keterbatasan penelitian ini terletak pada penggunaan data historis tunggal tanpa 

mempertimbangkan faktor eksternal seperti kebijakan moneter, sentimen pasar, dan 

kondisi makroekonomi yang dapat memengaruhi harga saham secara 

signifikan(Mochurad and Dereviannyi 2024)(A. Li et al. 2023)(Tuesta, Flores, and 

Mauricio 2025)(Fu and Zhang 2024). Model yang dikembangkan masih berfokus pada 

pendekatan supervised learning sehingga belum mampu menyesuaikan diri terhadap 

perubahan pola pasar secara dinamis(Chowdhury et al. 2020)(Suárez Cetrulo, Quintana, 

and Cervantes 2024). Arah penelitian selanjutnya disarankan untuk mengintegrasikan 

teknik reinforcement learning dan deep ensemble guna meningkatkan ketahanan model 

terhadap volatilitas tinggi(Namdari and Durrani 2021)(Zeng et al. 2023). Selain itu, 

pemanfaatan data alternatif seperti teks berita keuangan dan media sosial dapat 

memperkaya fitur analisis pasar (Kim et al. 2023)(Choi et al. 2025)(Su et al. 2022). 

Evaluasi lintas periode waktu juga diperlukan untuk menguji stabilitas model dalam 

berbagai fase ekonomi(Khan et al. 2023)(Zhao et al. 2024)(Arian, Norouzi Mobarekeh, 

and Seco 2024)(Hyndman and Rostami-Tabar 2025). 
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5. Kesimpulan 

Penelitian ini dengan tujuan menilai efektivitas tiga model pembelajaran mesin 

dalam memprediksi harga saham Bank Rakyat Indonesia (BBRI.JK). Permasalahan 

utama terletak pada tantangan meminimalkan kesalahan prediksi dan meningkatkan 

stabilitas model terhadap volatilitas pasar. Batasan penelitian ini adalah penggunaan data 

historis harga saham periode 2010–2025 tanpa mempertimbangkan variabel eksternal 

seperti kebijakan ekonomi dan sentimen pasar. Tujuan penelitian difokuskan pada 

pengembangan model prediksi yang akurat melalui integrasi rekayasa fitur teknikal, 

validasi silang, dan evaluasi performa berbasis metrik kuantitatif. Hasil penelitian 

menunjukkan bahwa model XGBoost memberikan performa paling optimal dengan R² = 

0,9451, MAE = 87,3129, dan MSE = 10.327,1187, mengungguli Random Forest (R² = 

0,9233) dan Neural Network (R² = 0,9120). Peningkatan akurasi sebesar 1,5% 

dibandingkan penelitian terdahulu menegaskan efektivitas kombinasi feature engineering 

dan algoritma gradient boosting. Validasi silang lima lipatan menghasilkan deviasi 

performa di bawah 2%, menandakan konsistensi hasil dan stabilitas model. Penelitian ini 

berkontribusi pada literatur akademik dan praktik industri keuangan dengan 

membuktikan bahwa integrasi fitur teknikal memperkuat ketahanan model terhadap 

dinamika pasar. Penelitian lanjutan disarankan untuk memasukkan variabel 

makroekonomi, data sentimen, serta eksplorasi model hibrida deep ensemble dan 

reinforcement learning guna meningkatkan akurasi serta kemampuan adaptasi terhadap 

perubahan pasar global. 
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