Optimalisasi Kinerja Tenaga Kependidikan di MTSN 1 Labuhanbatu Selatan Studi Kasus Penggunaan Algoritma Naïve Bayes
Abstract
This study aims to optimize the performance of Education personnel in MTsN 1 Labuhanbatu Selatan through the application of Naive Bayes algorithm for performance classification. The performance of Education personnel, including administrative, administrative, and service staff for one school year was analyzed using data involving attributes such as attendance, punctuality, productivity, and work attitude. Naive Bayes algorithm was chosen because of its ability to classify data accurately and efficiently despite the large amount of data. The results showed that the use of this algorithm can produce a more objective, accurate, and data-based evaluation system, as well as provide clearer insights in improving work efficiency and service to teachers and students. The evaluation of the model was conducted using accuracy, precision, recall, and F1-score metrics to ensure that the classification of educational staff performance can be done appropriately. The study also provides recommendations to improve data quality and the use of additional attributes to improve model performance.
Full Text:
PDFReferences
Al Fathir As, R. S., Utami, E., & Dwi Hartono, A. (2023). Comparison of Sentiment Analysis Methods on Topic Haram of Music In Youtube. Sinkron, 8(4), 2294–2307. https://doi.org/10.33395/sinkron.v8i4.12776
Ali, R., Yusro, M. M., Hitam, M. S., & Ikhwanuddin, M. (2021). Machine Learning With Multistage Classifiers For Identification Of Of Ectoparasite Infected Mud Crab Genus Scylla. Telkomnika (Telecommunication Computing Electronics and Control), 19(2), 406–413. https://doi.org/10.12928/TELKOMNIKA.v19i2.16724
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519–6526.
Budiman, B. (2021). Perbandingan Algoritma Klasifikasi Data Mining untuk Penelusuran Minat Calon Mahasiswa Baru. Nuansa Informatika, 15(2), 37–52. https://doi.org/10.25134/nuansa.v15i2.4162
Dr. V. Suma. (2020). Data Mining based Prediction of Demand in Indian Market for Refurbished Electronics. Journal of Soft Computing Paradigm, 2(3), 153–159. https://doi.org/10.36548/jscp.2020.3.002
Ekstraksi, D., Kompetensi, P., & Mardiani, L. (2021). Desain Model Data Mining Pada Model SECI Untuk Pemetaan. 8(3), 1607.
Farid Naufal, M., Fernando Susanto, A., Nathaneil Kansil, C., Huda, S., & kunci, K. (2023). Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Potensi Hilangnya Nasabah Bank Application of Machine Learning to Predict Potential Loss of Bank Customer. Februari, 22(1), 1–11.
Hartati, T., Nurdiawan, O., & Wiyandi, E. (2021). Analisis Dan Penerapan Algoritma K-Means Dalam Strategi Promosi Kampus Akademi Maritim Suaka Bahari. Jurnal Sains Teknologi Transportasi Maritim, 3(1), 1–7. https://doi.org/10.51578/j.sitektransmar.v3i1.30
Jahwar, A. (2021). Meta-Heuristic Algorithms for K-means Clustering: A Review. PalArch’s Journal of Archaeology of Egypt/Egyptology, 17(7), 7–9.
Karim, F., Nurcahyo, G. W., & Sumijan, S. (2021). Sistem Pakar dalam Mengidentifikasi Gejala Stroke Menggunakan Metode Naive Bayes. Jurnal Sistim Informasi Dan Teknologi, 3, 221–226. https://doi.org/10.37034/jsisfotek.v3i4.69
Lakhdari, Y., Soldevila, E., Rezgui, J., & Renault, É. (2023). Detection of Plant Diseases in an Industrial Greenhouse: Development, Validation & Exploitation. 2023 International Symposium on Networks, Computers and Communications, ISNCC 2023. https://doi.org/10.1109/ISNCC58260.2023.10323932
Mulyanto, A., Susanti, E., Rossi, F., Wajiran, W., & Borman, R. I. (2021). Penerapan Convolutional Neural Network (CNN) pada Pengenalan Aksara Lampung Berbasis Optical Character Recognition (OCR). Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 7(1), 52. https://doi.org/10.26418/jp.v7i1.44133
Nizam Fadli, M., Sudahri Damanik, I., Irawan, E., Tunas Bangsa, S., & Utara, S. (2021). Penerapan Metode Naive Bayes Dalam Menentukan Tingkat Kenyamanan Pada Rumah Sakit Terhadap Pasien. KLIK: Kajian Ilmiah Informatika Dan Komputer , 2(3), 117–122.
Palacios, C. A., Reyes-Suárez, J. A., Bearzotti, L. A., Leiva, V., & Marchant, C. (2021). Knowledge discovery for higher education student retention based on data mining: Machine learning algorithms and case study in chile. Entropy, 23(4), 1–23. https://doi.org/10.3390/e23040485
Poerwandono, E., & Perwitosari, J. (2023). Penerapan Data Mining Untuk Penilaian Kinerja Karyawan Di PT. Riksa Dinar DJaya Menggunakan Metode Naïve Bayes Classification (Edhy Poerwandono 1 , Faizal Joko Perwitosari 2 ) Penerapan Data Mining Untuk Penilaian Kinerja Karya Di PT Riksa Dinar Djaya Men. Jurnal Sains Dan Teknologi, 5(1), |pp.
Punkastyo, D. A., Septian, F., & Syaripudin, A. (2024). Implementasi Data Mining Menggunakan Algoritma Naïve Bayes Untuk Prediksi Kelulusan Siswa. Journal of System and Computer Engineering (JSCE), 5(1), 24–35. https://doi.org/10.61628/jsce.v5i1.1073
Putra, Y. E., & Fahrizal, M. (2021). Rancang Bangun Menggunakan Metode Naive Bayes Dalam Sistem Pakar Penentuan Penyakit Tanaman Nanas Berbasis WEB. Journal Portal Data, 1(1), 1–18.
Ridwan, A. (2020). Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus. Jurnal SISKOM-KB (Sistem Komputer Dan Kecerdasan Buatan), 4(1), 15–21. https://doi.org/10.47970/siskom-kb.v4i1.169
Setiawan, A., Rabi, A., & Gumilang, Y. S. A. (2024). Pengolahan Citra untuk Sortir Buah Stroberi Berdasarkan Kematangan Menggunakan Algoritma K-Nearst Neighbors (KNN). Blend Sains Jurnal Teknik, 2(4), 322–328. https://doi.org/10.56211/blendsains.v2i4.551
Siddik, A. M. A., Lawi, A., & wahid islahfari, M. (2022). Perbandingan Kinerja Model Ensembled Transfer Learning Pada Klasifikasi Penyakit Daun Tomat. Seminar Nasional Teknik Elektro Dan Informatika (SNTEI), 8(1), 286–291.
Syahputri, N. (2020). Penerapan Data Mining Asosiasi pada Pola Transaksi dengan Metode Apriori. Jurnal Sains Komputer & Informatika (J-SAKTI, 4(2), 728–736.
Wibisono, A. D., Dadi Rizkiono, S., & Wantoro, A. (2020). Filtering Spam Email Menggunakan Metode Naive Bayes. TELEFORTECH : Journal of Telematics and Information Technology, 1(1). https://doi.org/10.33365/tft.v1i1.685
Xu, Y., Zheng, X., Li, Y., Ye, X., Cheng, H., Wang, H., & Lyu, J. (2023). Exploring patient medication adherence and data mining methods in clinical big data: A contemporary review. In Journal of Evidence-Based Medicine (Vol. 16, Issue 3). https://doi.org/10.1111/jebm.12548
Yoridi, M. L. Y., & Pakereng, M. A. I. (2023). Klasifikasi Anak Berpotensi Putus Sekolah dengan Metode Naïve Bayes Di Kabupaten Manokwari. Jurnal Sains Komputer & Informatika (J-SAKTI), 7(2), 968–976.
DOI: https://doi.org/10.36987/jcoins.v6i3.8034
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE) dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). Journal of Computer Science and Information System(JCoInS) berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.
Journal URL: https://jurnal.ulb.ac.id/index.php/JCoInS/index
Journal DOI: 10.36987/jcoins
E-ISSN: 2747-2221
Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418