Klasifikasi Tingkat Kelulusan Mahasiswa Menggunakan Algoritma K-Nearest Neighbor (K-NN) Pada Data Akademik Perguruan Tinggi
Abstract
Higher education is an important factor in scoring quality human resources, where one indicator of success is the graduation rate of students on time. This study aims to classify the graduation rate of students using the algorithm K-Nearest Neighbor (K-NN) based on academic data which includes GPA, number of credits, frequency of repetition of courses, and attendance. The results of the classification showed that 30% of students successfully graduated on time, while the rest had delays. With the k-NN approach, it is expected that this model can help universities in predicting student graduation more accurately and optimizing academic interventions to improve graduation efficiency.
Full Text:
PDFReferences
Agarwal, R., Ardya Garini, D., Dhamayanti, D., Yulianti, E., Fahmi Kamal, Widi Winarso, Lia Mardiani, Dewi, A. P., Sudarwati, W., Sidaria, S., Murni, D., Khairina, I., Nelwati, N., Manaransyah, G., Rahman, A., Rachmawaty, I. K., Tamam. Sanusi, U., Andriani, D. S., Saputra, A., … Edi Gunawan, Andika Triansyah, F. P. H. (2022). Pengaruh Fasilitas, Harga Dan Lokasi Terhadap Kepuasan Siswa Pada Sekolah Menengah Kejuruan Muhammadiyah 1 Kalianda. Jurnal Ilmiah Akuntansi Dan Manajemen, 5(1), 1. https://doi.org/10.52157/me.v12i2.205
Aldi, F., Nozomi, I., Sentosa, R. B., & Junaidi, A. (2023). Machine Learning to Identify Monkey Pox Disease. Sinkron, 8(3), 1335–1347. https://doi.org/10.33395/sinkron.v8i3.12524
Amalia, R. (2020). Penerapan Data Mining untuk Memprediksi Hasil Kelulusan Siswa Menggunakan Metode Naïve Bayes. Juisi, 06(01), 33–42.
Andrianto, R., & Irawan, F. (2023). Implementasi Metode Regresi Linear Berganda Pada Sistem Prediksi Jumlah Tonase Kelapa Sawit di PT . Paluta Inti Sawit. Jurnal Pendidikan Tambusai, 7(1), 2926–2934.
Atalya Angelus Leza, M., Widya Utami, N., & Anugrah Cahya Dewi, P. (2024). Prediksi Prestasi Siswa Smas Katolik Santo Yoseph Denpasar Berdasarkan Kedisiplinan Dan Tingkat Ekonomi Orang Tua Menggunakan Metode Knowledge Discovery in Database Dan Algoritma Regresi Linier Berganda. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 373–379. https://doi.org/10.36040/jati.v8i1.8754
Badaru, B. S. (2022). Journal of Lex Theory (JLT). Journal of Lex Theory (JLT), 1(2), 122–135.
Giovani, A. P., Ardiansyah, A., Haryanti, T., Kurniawati, L., & Gata, W. (2020). Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi. Jurnal Teknoinfo, 14(2), 115. https://doi.org/10.33365/jti.v14i2.679
Hartati, T., Nurdiawan, O., & Wiyandi, E. (2021). Analisis Dan Penerapan Algoritma K-Means Dalam Strategi Promosi Kampus Akademi Maritim Suaka Bahari. Jurnal Sains Teknologi Transportasi Maritim, 3(1), 1–7. https://doi.org/10.51578/j.sitektransmar.v3i1.30
Hssina, B., Grota, A., & Erritali, M. (2021). Recommendation system using the k-nearest neighbors and singular value decomposition algorithms. International Journal of Electrical and Computer Engineering, 11(6), 5541–5548. https://doi.org/10.11591/ijece.v11i6.pp5541-5548
Indah Lestari, Y., & Defit, S. (2021). Jurnal Informatika Ekonomi Bisnis Prediksi Tingkat Kepuasan Pelayanan Online Menggunakan Metode Algoritma C.45. 3, 148–154. https://doi.org/10.37034/infeb.v3i3.104
Maruli Tua Silaen. (2023). Klasifikasi Karakteristik Kepribadian Siswa Berdasarkan the Big Five Personality Dengan Menggunakan Metode K- Nearest Neighbor (Knn). Jurnal Informatika Dan Rekayasa Elektronik, 6(1), 121–129. https://doi.org/10.36595/jire.v6i1.860
Muhadat, I. S. (2021). Kasgot Sebagai Alternatif Pupuk Organik Padat Pada Tanaman Sawit (Brassica juncea L) Dengan Metode Vertikulur. Industry and Higher Education, 3(1), 1689–1699.
Muhammad, L. J., Islam, M. M., Usman, S. S., & Ayon, S. I. (2020). Predictive Data Mining Models for Novel Coronavirus (COVID-19) Infected Patients’ Recovery. SN Computer Science, 1(4), 1–7. https://doi.org/10.1007/s42979-020-00216-w
Palacios, C. A., Reyes-Suárez, J. A., Bearzotti, L. A., Leiva, V., & Marchant, C. (2021). Knowledge discovery for higher education student retention based on data mining: Machine learning algorithms and case study in chile. Entropy, 23(4), 1–23. https://doi.org/10.3390/e23040485
Punkastyo, D. A., Septian, F., & Syaripudin, A. (2024). Implementasi Data Mining Menggunakan Algoritma Naïve Bayes Untuk Prediksi Kelulusan Siswa. Journal of System and Computer Engineering (JSCE), 5(1), 24–35. https://doi.org/10.61628/jsce.v5i1.1073
Purwati, N., Pedliyansah, Y., Kurniawan, H., Karnila, S., & Herwanto, R. (2023). Komparasi Metode Apriori dan FP-Growth Data Mining Untuk Mengetahui Pola Penjualan. Jurnal Informatika: Jurnal Pengembangan IT, 8(2), 155–161. https://doi.org/10.30591/jpit.v8i2.4876
Rachman, R., & Hunaifi, N. (2020). Penerapan Metode Algoritma Apriori dan FP-Tree Pada Penentuan Pola Pembelian Obat. Paradigma - Jurnal Komputer Dan Informatika, 22(2), 175–182. https://doi.org/10.31294/p.v22i2.8258
Samudi, S., Widodo, S., & Brawijaya, H. (2020). The K-Medoids Clustering Method for Learning Applications during the COVID-19 Pandemic. SinkrOn, 5(1), 116. https://doi.org/10.33395/sinkron.v5i1.10649
Sari, A. W., Hermanto, T. I., & Defriani, M. (2023). Sentiment Analysis Of Tourist Reviews Using K-Nearest Neighbors Algorithm And Support Vector Machine. Sinkron, 8(3), 1366–1378. https://doi.org/10.33395/sinkron.v8i3.12447
Sarimole, F. M., & Rosiana, A. (2022). Classification of Maturity Levels in Areca Fruit Based on Hsv Image Using the Knn Method. Journal of Applied Engineering and Technological Science, 4(1), 64–73. https://doi.org/10.37385/jaets.v4i1.951
Setiawan, A., Rabi, A., & Gumilang, Y. S. A. (2024). Pengolahan Citra untuk Sortir Buah Stroberi Berdasarkan Kematangan Menggunakan Algoritma K-Nearst Neighbors (KNN). Blend Sains Jurnal Teknik, 2(4), 322–328. https://doi.org/10.56211/blendsains.v2i4.551
Sriwinarti, N. K., & Juniarti, P. (2021). Analisis Metode K-Nearest Neighbors ( K-NN ) Dan Naive Bayes Dalam Memprediksi Kelulusan Mahasiswa ( Analysis of K-Nearest Neighbors ( K-NN ) and Naive Bayes Methods in Predicting Student Graduation ). 3(2), 106–112.
Wahyudi, A., Ovelia Tampubolon, S., afrilia Putri, N., Ghassa, A., Rasywir, E., & Kisbianty, D. (2022). Penerapan Data Mining Algoritma Naive Bayes Clasifier Untuk Mengetahui Minat Beli Pelanggan Terhadap INDIHOME. Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM), 2(2), 240–247. https://doi.org/10.33998/jakakom.2022.2.2.111
Xu, Y., Zheng, X., Li, Y., Ye, X., Cheng, H., Wang, H., & Lyu, J. (2023). Exploring patient medication adherence and data mining methods in clinical big data: A contemporary review. In Journal of Evidence-Based Medicine (Vol. 16, Issue 3). https://doi.org/10.1111/jebm.12548
DOI: https://doi.org/10.36987/jcoins.v6i3.8041
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE) dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). Journal of Computer Science and Information System(JCoInS) berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.
Journal URL: https://jurnal.ulb.ac.id/index.php/JCoInS/index
Journal DOI: 10.36987/jcoins
E-ISSN: 2747-2221
Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418