Rekayasa Fitur dan Gradient Boosting untuk Prediksi Harga Saham Pada Pasar Saham Indonesia
Abstract
This study aims to analyze the comparative performance of three machine learning models Neural Network, Random Forest, and XGBoost in predicting the stock price of Bank Rakyat Indonesia (BBRI.JK) based on feature engineering integration. The background of this study is based on the need to develop accurate and efficient predictive models to deal with stock market volatility. The Data used covers the period 2010-2025 with the application of technical indicators such as Moving Average (MA), Relative Strength Index (RSI), volatility, and price momentum as the main features. The research method uses a machine learning approach based on supervised learning with a five-fold cross validation process. Model evaluation was conducted using quantitative metrics including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), coefficient of determination (R2), and Mean Absolute Percentage Error (MAPE). The results showed that XGBoost produced the Best Performance With R2 = 0.9451, MAE = 87.3129,and MSE = 10327.1187, followed by Random Forest (R2 = 0.9233) and Neural Network (R2 = 0.9120). The XGBoost Model proved to be the most stable and efficient in handling nonlinear data as well as extreme price fluctuations. The discussion confirms that the integration of engineering features improves the generalization capability of the model and lowers the prediction error rate significantly. Future research is recommended to include macroeconomic variables, sentiment data, and reinforcement learning approaches to broaden the scope and improve the model's adaptability to global financial market dynamics.
Full Text:
PDFDOI: https://doi.org/10.36987/jcoins.v7i1.8945
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE) dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). Journal of Computer Science and Information System(JCoInS) berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.
Journal URL: https://jurnal.ulb.ac.id/index.php/JCoInS/index
Journal DOI: 10.36987/jcoins
E-ISSN: 2747-2221
Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418