Pengaruh Sistem Olah Tanah dan Pemupukan NPK Terhadap Pertumbuhan dan Hasil Tanaman Jagung Manis (Zea mays L.)

Ines Junita Putri Daeli^{1*}, Ida Zulfida², Salman Alfarisi³

 1,2,3 Program Studi Agroteknologi, Fakultas Pertanian, Universitas Pembinaan Masyarakat Indonesia
*Corresponding author, email: daeliines98@gmail.com

ABSTRACT

This study aims to evaluate the effect of soil tillage systems and NPK fertilizer doses on the growth and yield of sweet corn (Zea mays L.). The study was conducted using a two-factor factorial RAK, namely soil tillage (no tillage, minimum, and maximum) and NPK doses (0, 60, 90, and 120 g/plot). The results showed that the maximum soil preparation treatment (O3) and NPK fertilizer rate of 120 g/plot (P3) generally yielded the best results. However, the combination of O1P2 (no soil preparation + 90 g of fertilizer) also showed high yields on certain parameters, indicating the potential for fertilizer efficiency without the need for intensive soil preparation. This study underscores the importance of combining appropriate land management and fertilization practices to sustainably enhance sweet corn productivity.

Keywords: sweet corn, soil tillage system, NPK fertilizer, growth, yield

ABSTRAK

Penelitian ini bertujuan untuk mengevaluasi pengaruh sistem olah tanah dan dosis pupuk NPK terhadap pertumbuhan dan hasil jagung manis (Zea mays L.). Penelitian dilakukan menggunakan RAK faktorial dua faktor, yaitu olah tanah (tanpa olah, minimum, dan maksimum) dan dosis NPK (0, 60, 90, dan 120 g/plot). Hasil menunjukkan bahwa perlakuan olah tanah maksimum (O3) dan dosis NPK 120 g/plot (P3) secara umum memberikan hasil terbaik. Namun, kombinasi O1P2 (tanpa olah tanah + 90 g pupuk) juga menunjukkan hasil yang tinggi pada parameter tertentu, menandakan potensi efisiensi pemupukan tanpa perlu pengolahan tanah intensif. Penelitian ini menegaskan pentingnya kombinasi pengelolaan lahan dan pemupukan yang tepat untuk meningkatkan produktivitas jagung manis secara berkelanjutan.

Kata kunci: jagung manis, sistem olah tanah, pupuk NPK, pertumbuhan, hasil

PENDAHULUAN

Jagung manis (Zea mays saccharata Sturt.) merupakan komoditas pangan yang mempunyai potensi untuk dikembangkan karena memiliki tingkat minat konsumen tinggi. Jagung manis adalah salah satu tanaman yang banyak di produksi dan sumber bahan pokok pangan di Indonesia seperti dibuat olahan makanan, minuman, dan sebagainya. Biji jagung manis memiliki rasa manis dari pada biji jagung biasa. Untuk warna dari biji jagung manis memiliki warna kuning berbeda dengan jagung biasa yang memiliki warna orange cerah. Jagung manis dikonsumsi pada usia muda, untuk jagung biasa di panen pada usia tua dan mengering. Setiap 100 kg jagung manis yang dikonsumsi, mengandung energi 96 kalori,

karbohidrat 22,8 g, protein 3,5 g, lemak 1,0 g, K 3,0, Fe 0,7 mg, P 111 mg,0,7 mg, Vitamin A 400 mg, Vitamin 0,15 mg, Vitamin C 12 mg, dan air 0,727 % Air (Harini *et al.*, 2023).

Meskipun jagung manis sudah dikenal oleh masyarakat, budidaya tanaman jagung manis masih menghadapi masalah yang cukup sulit oleh para petani terutama dalam penggunaan pupuk. Seringkali pertumbuhan & hasil produksi yang rendah disebabkan oleh ketidakpastian dalam penggunaan dosis dan metode pemberian pupuk. Untuk mempercepat pertumbuhan & produksi jagung manis, pemberian pupuk majemuk pilihan yang tepat untuk digunakan. Pilihan pupuk tanaman yang tepat sangat penting untuk keberhasilan budidaya jagung manis. Pemupukan dilakukan dengan berbagai cara terutama dengan cara ditebar disekitar tanaman yang akan diserap oleh akar tanaman (Tambunan & Syukri Risyad, 2024).

Berdasarkan data Badan Pusat Statistik Sumatra Utara rata-rata produksi jagung dari tahun 2020-2022 meunjukkan beberapa peningkatan dan penurunan setiap tahunnya. Pada tahun 2020 rata-rata prokduksi jagung berada diangka 61,19 (kw/ha), kemudian ditahun 2021 mengalami peningkatan yang dimana berada diangka 63,00 (kw/ha), dan ditahun 2022 mengalami penurunan yang dimana berada diangka 62,46 (kw/ha) (Badan Pusat Statistik Provinsi Sumatera Utara, 2023). Perubahan angka produksi tersebut mencerminkan bahwa hasil panen jagung di Sumatera Utara belum sepenuhnya stabil dari tahun ke tahun.

Ketidakstabilan ini dapat dipengaruhi oleh sejumlah faktor, seperti variasi cuaca, penerapan teknik budidaya yang belum maksimal, serta kurang tepatnya pengelolaan lahan dan pemupukan. Olah tanah adalah salah satu faktor penting dalam pembudidayaan tanaman jagung dibarengi dengan pemupukan yang harus di pertimbangkan dalam proses budidaya. Olah tanah pada dasarnya dapat meningkatkan pertumbuhan dan hasil tanaman jagung. Perlu tidaknya tanah diolah dapat dipengaruhi oleh tingkat kepadatan dan aerasi pada tingkat ketebalan yang tinggi karena tidak pernah dikembangkan pertumbuhannya akan terhambat, sehingga zona penyerapan akar menjadi terbatas. Sementara itu, pengolahan tanah secara terus menerus dapat menurunkan laju penetrasi tanah akibat pemadatan tanah (Wardana Riko Syaputrai, 2024).

Selain olah tanah, pemupukan juga berperan krusial dalam mendukung pertumbuhan dan hasil tanaman. Pupuk NPK sebagai sumber unsur hara makro utama (Nitrogen, Fosfor, dan Kalium) sangat dibutuhkan dalam fase pertumbuhan vegetatif dan generatif jagung manis. Pemberian dosis yang tepat mampu mendorong pembentukan organ tanaman secara optimal, seperti daun, batang, tongkol, dan biji. Namun, efisiensi pemupukan sangat bergantung pada kondisi tanah dan metode budidaya yang digunakan, termasuk sistem olah tanah

Untuk itu di dalam penelitian ini akan mengkaji tentang bagaimana para petani bisa mengolah tanah dengan variasi pupuk Npk dalam meningkatkan pertumbuhan dan hasil tanaman jagung.

BAHAN DAN METODE

Penelitian ini dilaksanakan di lahan percobaan Fakultas Pertanian Universitas Pembinaan Masyarakat Indonesia (UPMI) Medan. Jalan Wakaf, Pasar 12, Marendal 2, Kecamatan Patumbak, Kabupaten Deli Serdang dengan ketinggian tempat 40 m diatas permukaan laut.

Tahapan awal dalam pelaksanaan penelitian ini dimulai dengan kegiatan pembersihan lahan dari gulma dan tanaman pengganggu lainnya. Langkah ini dilakukan untuk menciptakan lingkungan tumbuh yang bersih dan mendukung pertumbuhan optimal tanaman jagung manis. Setelah lahan dinyatakan siap, dilanjutkan dengan pembentukan bedengan atau plot percobaan yang disusun berdasarkan rancangan acak lengkap guna memastikan bahwa setiap kombinasi perlakuan memiliki peluang yang sama dan tidak dipengaruhi oleh posisi lahan. Plot akan dibuat sebanyak 36 plot dengan ukuran 100x100 dengan jarak setiap plotnya 25 cm.

Pemupukan dasar akan dilakukan dengan cara menaburkan pupuk NPK Mutiara pada tanah yang sudah selesai diolah berdasarkan perlakuan, pupuk dasar akan diberikan pada setiap

lubang tanam yang sudah di sediakan seminggu sebelum penanaman. Masing-masing plot diberi perlakuan sistem olah tanah yang berbeda, yaitu: O1 sebagai perlakuan tanpa olah tanah di mana tanah dibiarkan dalam kondisi alaminya tanpa pengolahan; O2 merupakan perlakuan olah tanah minimum, di mana tanah hanya diolah secara terbatas dan sebagian gulma sengaja dibiarkan sebagai penutup tanah alami untuk mengurangi penguapan dan erosi; sedangkan O3 merupakan olah tanah maksimum yang dilakukan dengan pengolahan menyeluruh untuk memperbaiki struktur tanah dan meningkatkan aerasi.

Setiap plot akan ditanami 6 tanaman dengan cara melubangi tanah sedalam 2-3 cm dan memasukkan 2 biji jagung. Penyiraman akan dilaukan sekali sehari untuk menjaga kelembabaan biji jagung yang sudah di tanam agar tidak busuk.

Penelitian ini di lakukan dengan tujuan untuk mengetahui pengaruh pertumbuhan tanaman jagung dengan mengolah tanah menggunakan sistem yang berbeda dan pemberian dosis pupuk Npk Mutiara yang berbeda di setiap perlakuan. Penelitian ini menggunakan metode RAK yang dengan 2 faktor yaitu: sistem olah tanah (O) sebagai faktor pertama dan dosis pemupukan Npk (N) sebagai faktor kedua.

Dosis Npk yang digunakan adalah P0 tanpa pupuk, P1 100 kg/ha setara dengan 60 g/plot, P2 150 kg/ha setara dengan 90 g/plot, P3 200 kg/ha setara dengan 120 g/plot (Prakoso & Handayani, 2018).

HASIL DAN PEMBAHASAN

Berdasarkan hasil penelitian dan hasil analisis sidik ragam menunjukkan bahwa interaksi antara olah tanah (O) dan pemberian pupuk Npk (P) berpengaruh sangat nyata terhadap tinggi tanaman mulai pada umur 4 mst dan 5 mst. Pengaruh tunggal olah tanah (O) dan pupuk Npk (P) berpengaruh tidak nyata terhadap tinggi tanaman pada umur 2 mst, 4 mst, dan 6 mst. Hasil interaksi antara sistem olah tanah dan pemupukan NPK menunjukkan bahwa kombinasi perlakuan tertentu mampu memberikan hasil yang lebih baik dibanding perlakuan tunggal. Misalnya, meskipun secara terpisah olah tanah atau pupuk NPK tidak menunjukkan pengaruh signifikan terhadap tinggi tanaman pada semua umur pengamatan, namun saat digabungkan, pengaruhnya menjadi nyata pada umur 4 dan 5 mst. Hal ini mengindikasikan bahwa respons pertumbuhan jagung manis lebih dipengaruhi oleh sinergi antara kondisi fisik tanah yang diciptakan oleh pengolahan dan ketersediaan unsur hara dari pupuk.

Kondisi ini juga terlihat pada parameter jumlah buah per sampel, di mana interaksi perlakuan memperlihatkan pengaruh yang signifikan. Kombinasi olah tanah maksimum dengan dosis pupuk yang sesuai memberikan hasil yang lebih optimal dibandingkan perlakuan lainnya. Hal ini menunjukkan bahwa struktur tanah yang lebih baik akibat pengolahan secara intensif, ditambah dengan kecukupan unsur hara, mendukung proses pembentukan buah secara maksimal. Interaksi antara olah tanah (O), pemberian pupuk Npk (P) berpengaruh sangat nyata pada jumlah buah tanaman persampel.

Sementara pengaruh tunggal olah tanah (O) tidak berpengaruh nyata pada berat buah tanaman sampel namun pengaruh tunggal pupuk Npk (P) berpengaruh berbeda nyata terhadap berat buah tanaman sampel. Analisis data untuk parameter pengamatan berat buah per tanaman, perlakuan tunggal pupuk Npk memberikan pengaruh yang signifikan, menunjukkan bahwa unsur hara yang tersedia dalam pupuk berperan penting dalam proses pengisian biji dan pembentukan bobot tongkol. Ketiadaan pengaruh nyata dari sistem olah tanah terhadap berat buah mengisyaratkan bahwa selama kebutuhan hara tanaman tercukupi, struktur tanah bukan satu-satunya faktor penentu bobot hasil panen. Dengan demikian, interaksi antara sistem olah tanah dan pemupukan memberikan pengaruh yang kompleks terhadap berbagai aspek pertumbuhan dan hasil jagung manis. Oleh karena itu, pemilihan strategi budidaya yang mempertimbangkan kombinasi perlakuan sangat penting untuk mengoptimalkan hasil panen

secara keseluruhan. Hasil ini juga menunjukkan bahwa efisiensi penggunaan pupuk dapat ditingkatkan dengan penerapan teknik olah tanah yang sesuai dengan kondisi lahan.

Tabel 1. Pengaruh Interaksi Antara Olah Tanah Dan Pupuk Npk Terhadap Tinggi Tanaman Pada Umur 4 Mst

Perlakuan	Pupuk NPK					
Olah Tanah	P0	P1	P2	P3 Total	l Rataan	
O1	267,0 dc	220,5 ab	289,0 e	259,7 cd	776,5	259,1
O2	275,4 d	260,9 cd	265,4 dc	257,7 cd	801,8	264,9
O3	245,7 с	233,1 b	232,5 b	209,1 a	711,3	230,1
Total	788,1	714,4	787,0	726,6	3.016,1	
Rata-Rata	262,7	238,1	262,3	242,2		

Keterangan : Angka yang diikuti oleh huruf yang sama pada kolom dan baris berbeda tidak nyata pada taraf $\alpha = 0.05$ (huruf kecil) berdasarkan uji DMRT.

Tabel 1 menunjukkan pengaruh interaksi antara olah tanah dan pupuk Npk berpengaruh sangat nyata terhadap tinggi tanaman umur 4 mst tertinggi pada perlakuan O1P2 sebesar 289,0 cm, dan terendah pada perlakuan O3P3 sebesar 209,1 cm. Hasil analisis data parameter dilapangan justru bebeda dari penelitian sebenlumnya yang menyatakan bahwa makin tinggi dosis pupuk organik dan pupuk NPK yang diberikan (O3P3), maka laju pertumbuhan dan produksi tanaman makin meningkat pula (Kriswanto *et al.*, 2016).

Tabel 2. Pengaruh Interaksi Antara Olah Tanah Dan Pupuk Npk Terhadap Jumlah Buah Tanaman Persampel

Perlakuan	Pupuk NPK			m . 1		
Olah Tanah	P0	P1	P2	P3 Total	Rataan	
O1	6,7 cd	6,3 d	7,3 ab	7,0 bc	20,3	6,8
O2	6,3 cd	6,7 cd	7,0 bc	7,3 ab	20,0	6,8
O3	6,7 cd	6,0 d	8,0 a	6,7	20,7	6,8
Total	19,7	19,0	22,3	21,0	82,0	
Rata-rata	6,6	6,3	7,4	7,0		

Keterangan : Angka yang diikuti oleh huruf yang sama pada kolom dan baris berbeda tidak nyata pada taraf $\alpha = 0.05$ (huruf kecil) berdasarkan uji DMRT.

Tabel 2 menunjukkan pengaruh interaksi antara olah tanah dan pupuk Npk berpengaruh sangat nyata terhadap jumlah buah persampel. Tertinggi pada perlakuan O3P2 sebesar 8,0 cm, dan terendah pada perlakuan O3P1 sebesar 6,0. Hal ini sejalan dengan penelitian (Nurbaiti *et al.*, 2022) yang menyatakan bahwa dengan sistem olah tanah maksimum lebih efektif dari pada tanpa olah tanah dan olah tanah minimum serta lebih meningkatkan produksi dari tanaman jagung manis karena olah tanam maksimum membuat tanah menjadi lebih gembur dan remah sehingga membuat aerasi dalam tanah lebih baik.

Kondisi tanah yang terolah dengan baik juga mendukung aktivitas mikroorganisme tanah yang berperan dalam ketersediaan unsur hara, khususnya nitrogen, fosfor, dan kalium yang menjadi bagian utama dari pupuk NPK. Kombinasi antara sistem olah tanah intensif dan dosis pupuk yang tepat, seperti pada perlakuan O3P2, memberikan keseimbangan antara

ketersediaan hara dan kemampuan tanaman dalam menyerap serta menggunakannya untuk pertumbuhan dan pembentukan hasil. Meski begitu, hasil yang lebih rendah pada O3P1 menunjukkan bahwa penggunaan pupuk dengan dosis terlalu rendah tidak cukup untuk mengimbangi kebutuhan tanaman dalam kondisi tanah yang terolah penuh. Oleh karena itu, selain sistem olah tanah, pemilihan dosis pupuk yang sesuai menjadi faktor penting untuk mengoptimalkan hasil tanaman jagung manis.

Tabel 3. Pengaruh Tunggal Olah Tanah Dan Pupuk Npk Terhadap Berat Buah Tanaman Persampel (G)

Perlakuan	Berat Buah Persampel		
Olah Tanah			
O1	1.604,2		
O2	1.677,5		
O3	1.631,7		
Pupuk Npk			
PO	1.507,8 c		
P1	1.535,6 c		
P2	1.831,1 b		
_P3	1.676,7		

Keterangan : Angka yang diikuti oleh huruf yang sama pada kolom dan baris berbeda tidak nyata pada taraf $\alpha = 0.05$ (huruf kecil) berdasarkan uji DMRT.

Tabel 3 menunjukkan pengaruh tunggal olah tanah memberikan pertumbuhan berbeda pada jumlah daun tanaman. Perlakuan O1 sebesar 1.604,2 g, O2 sebesar 1.677,5 g, dan O3 sebesar 1.631,7 g. Tertinggi terdapat pada O2 yaitu 1.677,5 g, dan terendah pada O3 yaitu 1.631,7 g. Pengaruh tunggal pupuk Npk juga memberikan pertumbuhan yang berbeda pada jumlah daun tanaman. Perlakuan P0 sebesar 1.507,8 g, P1 sebesar 1.535,6 g, P2 sebesar 1.831,1 g, dan P3 sebesar 1.676,7 g. Tertinggi terdapat pada perlakuan P2 yaitu sebesar 1.831,1 g, dan terendah terdapat pada perlakuan P0 yaitu sebesar 1.507,8 g.

Hal ini sejalan dengan penelitian (Tambunan & Syukri Risyad, 2024) mencatat bahwa kandungan posfor (P) memiliki dampak terhadap perkembangan buah, sementara unsur kalium (K) memanikan peran transportasi unsur hara, dan kandungan kalium yang tinggi yang dapat membantu pembentukan dan pengisian biji dengan baik. Kemudian unsur nitrogen (N) memengaruhi panjang tongkol, bobot tongkol, yang dipengaruhi oleh faktor genetik.

KESIMPULAN

Berdasarkan hasil penelitian yang telah dilakukan, dapat disimpulkan bahwa sistem olah tanah dan pemberian pupuk NPK, baik secara tunggal maupun interaksi keduanya, memberikan pengaruh nyata terhadap pertumbuhan dan hasil tanaman jagung manis. Sistem olah tanah maksimum (O3) memberikan hasil terbaik pada beberapa parameter generatif seperti jumlah buah per sampel dan panjang tongkol saat dikombinasikan dengan dosis pupuk yang tepat, khususnya pada perlakuan O3P2. Namun, hasil berbeda ditemukan pada parameter tinggi tanaman, di mana kombinasi tanpa olah tanah dengan dosis pupuk 90 g/plot (O1P2) justru menghasilkan tinggi tanaman tertinggi. Hal ini menunjukkan bahwa efisiensi pemupukan tetap dapat dicapai meskipun tanpa pengolahan tanah secara intensif. Secara umum, perlakuan dengan olah tanah maksimum dan dosis pupuk NPK yang sesuai mampu meningkatkan hasil panen, tetapi efektivitasnya tetap bergantung pada kombinasi perlakuan dan respon tanaman terhadap kondisi lingkungan.

DAFTAR PUSTAKA

- Badan Pusat Statistik Provinsi Sumatera Utara. (2023). *Luas panen, produksi dan rata-rata produksi jagung menurut kabupaten/kota, 2022*. https://sumut.bps.go.id/id/statistics-table/2/MTU2IzI=/luas-panen-produksi-dan-rata-rata-produksi-jagung-menurut-kabupaten-kota.html
- Harini, N. V. A., Ilmiasari, Y., Sanjaya, R., Novrimansyah, E. A., & Febrianti, S. (2023). PENGARUH PUPUK NPK TERHADAP PERTUMBUHAN DAN HASIL PRODUKSI JAGUNG MANIS (Zea mays saccharata Sturt.) DI LAMPUNG UTARA. *AGRORADIX: Jurnal Ilmu Pertanian*, 7(1), 31–37. https://doi.org/10.52166/agroteknologi.v7i1.4928
- Kriswanto, H., Safriyanti, E., & Bahri, S. (2016). Pemberian pupuk organik dan pupuk NPK pada tanaman jagung manis (Zea mays saccharata, Sturt) (Application of organic fertilizer and NPK fertilizer to sweet corn (Zea mays saccharata, Sturt)). *J. Klorofil*, *11*(1), 1.
- Nurbaiti, A., Ika, P., Berliana, P., & Hendra, S. (2022). Peningkatan Produksi Jagung Manis (Zea mays saccharata Sturt.) dengan Sistem Olah Tanah dan Tingkat Pemupukan Kimia Berbeda. *Klorofil*, 17(2), 41–46.
- Prakoso, T. B., & Handayani, T. (2018). Pengaruh dosis pupuk hayati petrobio dan pupuk npk mutiara terhadap pertumbuhan dan produksi tanaman jagung manis (Zea mays varietas saccharata Sturt.) varietas talenta. *Jurnal Ilmiah Hijau Cendekia*, 3(1), 73–82.
- Tambunan, S., & Syukri Risyad, A. M. (2024). Respon Pertumbuhan dan Hasil Jagung Manis (Zea mays saccharata Sturt.) terhadap Dosis dan Cara Pemupukan NPK. *Jurnal Agrotek Lestar*, 10(2), 155–166.
- Wardana Riko Syaputrai. (2024). Peningkatan produksi tanaman jagung melalui aplikasi bahan organik dengan berbagai sistem olah tanah. *Jurnal Javanica*, *3*, 97–102.