TOOLS
PENERAPAN METODE PERCEPTRON MENGIDENTIFIKASI PENYAKIT TUBERCULOSIS ( TBC ) PRIMER PADA ANAK ( STUDI KASUS PUSKESMAS BAGAN BATU, KAB.ROKAN HILIR, RIAU )
Abstract
Based on the data from healty ministry of Republic of Indonesia in 2013 said Tuberculosis
disease for children now is growing so fast. This TBC is not “contaminate†but still dangerous for the
children itself. Perceptron method is the best method in Artificial Intelligence system it can be used in
identifying the pattern very well, because this Perceptron method has the learning process that can
generate the convergent weight so the output value equal to target every single input. The way to
determine the inputs for testing is used the criteria “identified and disidentifiedâ€, so that in this research
applying JST will really helpful doctor in diagnosing early properly, because the result of real diagnosing
is really helpful in decreasing the contaminated of Primary TBC. The accuracy with 15 samples of
training data produce 60%, while the testing data proving 100% that this method can identify the disease
pattern.
disease for children now is growing so fast. This TBC is not “contaminate†but still dangerous for the
children itself. Perceptron method is the best method in Artificial Intelligence system it can be used in
identifying the pattern very well, because this Perceptron method has the learning process that can
generate the convergent weight so the output value equal to target every single input. The way to
determine the inputs for testing is used the criteria “identified and disidentifiedâ€, so that in this research
applying JST will really helpful doctor in diagnosing early properly, because the result of real diagnosing
is really helpful in decreasing the contaminated of Primary TBC. The accuracy with 15 samples of
training data produce 60%, while the testing data proving 100% that this method can identify the disease
pattern.
Full Text:
PDFReferences
Lingkungan., D. P. (2013). Petunjuk Teknis
Manajemen TB Anak. Jakarta: Kemenkes RI.
Khan, R. A. (2014). Neural Network:Business
Aplication. The Aplication Journal Science &
Techonology , 234-239.
Kusumadewi, S. (2004). Membangun Jaringan
Syaraf Tiruan Menggunakan Ma.
Yogyakarta: Graha Ilmu.
DOI: https://doi.org/10.36987/informatika.v4i2.232
Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE)dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). INFORMATIKA berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.
INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855
Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418