Penerapan Market Basket Analysis Dengan Metode Apriori Pada WFZ Book Store
Abstract
WFZ Book Store is a Book Store that provides various types of books. The sales process is done offline where the costumer has to visit the store to make a purchase. The process of recording data using the ledger makes it difficult for WFZ Book Store to make sales reports because it has to collect transaction data in the ledger, it causes difficulties to know the available Book stock because it has to check every sales transaction in the ledger. WFZ Book Store requires an information system that can manage book sales data onlineagarcostumers can easily view book data, stockand book online reservations. With the wfz Book Store information system can facilitate the customer in managing book data and store customer data that has made transactions also WFZ Book Store does not find it difficult to provide book purchase transaction data for the customer, so that the data can be used for book recommendations by finding the set of data that most often appear in a data set. Datamining techniques have been widely used to overcome existing problems, one of which is the application of a-priori algorithms to find association rules formed from book purchase transaction datasets. So it will be known the association between the title of the book purchased. The association rules between book titles formed from the mining process can later be used by the WFZ Book Store to increase the number of books purchased, besides that it can be used for the procurement of books from the association rules of frequently purchased books, it can also be developed into a knowledge base for the book purchase recommendation system. The Output is in the form of a priori algorithm analysis software.
Keywords
Full Text:
PDFReferences
Elisa, Erlin (2018). Market Basket Analysis Pada Mini Market Ayu
Dengan Algoritma Apriori. 2(2)
Fitrina, N et al (2018) Penerapan Algoritma apriori pada sistem rekomendasi barang di minimarket batox. Jurnal TIKomSiN 6(2)
Gunadi, G., & Sensuse, D. I. (2016). Penerapan metode data mining market basket analysis terhadap data penjualan produk buku dengan menggunakan algoritma apriori dan frequent pattern growth (fp-growth): studi kasus percetakan PT. Gramedia. Telematika MKOM, 4(1), 118–132
Jiawei Han dan Micheline Kamber, â€Data Mining: Concepts and Techniques : Chapter 6. Mining Association Rules in Large Databasesâ€, Simon Fraser University, 2000
Kusrini, â€Penerapan Algortima Apriori Pada Data Mining Untuk Mengelompokkan Barang Berdasarkan Kecenderungan Kemunculan Bersama Dalam Satu Transaksiâ€, E-learning Center STMIK AMIKOM Yogyakarta, 2007
Putra et al (2019) Implementasi Algoritma Apriori terhadap data penjualan pada perusahaan retail. Jurnal PILAR Nusa Mandiri 1(15)
R. Halim and P. A. Jusia, (2017)Perancangan Market Basket Analysis Menggunakan Association Rule
untuk Pendukung Keputusan Promosi pada Sistem Penjualan Sun Young Cell. 12(1)
Santoso, H., Hariyadi, I. P., & Prayitno. (2016). Data Mining Analisa Pola Pembelian Produk Dengan Menggunakan Metode Algoritma Apriori. Teknik Informatika. ISSN : 2302- 3805, (1), 19–24.
DOI: https://doi.org/10.36987/informatika.v11i1.3845
INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855
Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418