Pengimplementasian Tingkat Ketepatan Waktu Kelulusan Siswa (Studi Kasus Di MTS Nur Ibarhimy) Menggunakan Algoritma C4.5

Rizky Amansyah, Masrizal Masrizal, Ibnu Rasyid Munthe

Abstract


Education has a very important role in shaping the individual and directing the development of society. As an educational institution, MTS Nur Ibrahimy has a responsibility to improve the quality and efficiency in the implementation of Education. MTS Nur Ibrahimy is located in Rantauprapat, Rantau Selatan district, Labuhanbatu Regency. MTs Nur Ibrahimy has been established since 2000 and has produced a number of students who successfully completed their education at this school. Along with technological advances, pattern exploration can be done by using data classification techniques obtained through the data mining process. Data mining is generally done because of the large amount of data, which can be used to generate patterns and useful knowledge in the business operations of a company. One of the methods developed in data mining is a way to dig up existing data to build a model, and then use the model to recognize other data patterns that are not contained in the stored database. In this context, a classification model is created to identify data patterns related to "Passed" or "not passed" status classes, based on pattern Determination results from training data. The Decision Trees Model is an implementation of the classification model in data mining. This Model builds a decision tree from training data consisting of records in a database. The C4.5 algorithm is one of the data classification algorithms that uses decision tree techniques and is able to manage numerical (continuous) and discrete data, and can handle missing attribute values. This algorithm produces rules that are easy to interpret. C4.5 has been tested in various classification cases, including in medical, trade, personnel, and various other fields.


Keywords


Data Mining, Graduation Time, Decision Trees, C4.5 Algorithm.

Full Text:

PDF

References


S. Andayani, “Formation of clusters in Knowledge Discovery in Databases by Algorithm K-Means,” SEMNAS Mat. dan Pendidik. Mat. 2007, 2007.

C. N. Dengen, K. Kusrini, and E. T. Luthfi, “Implementasi Decision Tree Untuk Prediksi Kelulusan Mahasiswa Tepat Waktu,” Sisfotenika, vol. 10, no. 1, p. 1, 2020, doi: 10.30700/jst.v10i1.484.

Hendry, “Data mining Prediksi Data Tingkat Malas Siswa Di Sekolah SMA,” Apl. dan Anal. Lit. Fasilkom UI, vol. m, no. 1998, pp. 7–34, 2021, [Online]. Available: http://elib.unikom.ac.id/files/disk1/655/jbptunikompp-gdl-supriadini-32740-6-12.unik-i.pdf

L. Yuningsih, I. R. Setiawan, and A. A. Sunarto, “Rancangan Aplikasi Prediksi Kelulusan Siswa Menggunakan Algoritma C4.5,” Progresif J. Ilm. Komput., vol. 16, no. 2, p. 121, 2020, doi: 10.35889/progresif.v16i2.517.

Y. Partogi and A. Pasaribu, “Perancangan Metode Decision Tree Terhadap Sistem Perpustakaan STMIK Kuwera,” J. Sist. Inf. dan Teknol., vol. 1, no. 2, pp. 20–25, 2022, doi: 10.56995/sintek.v1i2.4.

I. Romli and A. T. Zy, “Penentuan Jadwal Overtime Dengan Klasifikasi Data Karyawan Menggunakan Algoritma C4.5,” J. Sains Komput. Inform. (J-SAKTI, vol. 4, no. 2, pp. 694–702, 2020.

A. Ulfa, D. Winarso MKom, and E. Arribe MMSi, “SISTEM REKOMENDASI JURUSAN KULIAH BAGI CALON MAHASISWA BARU MENGGUNAKAN ALGORITMA C4.5 (Studi Kasus : Universitas Muhammadiyah Riau),” J. Fasilkom, vol. 10, no. 1, pp. 61–65, 2020.

P. S. Akuntansi, “1* , 2 1,2,” vol. 20, no. 1, pp. 105–123, 2022.

M. Kamil and W. Cholil, “Analisis Perbandingan Algoritma C4.5 dan Naive Bayes pada Lulusan Tepat Waktu Mahasiswa di Universitas Islam Negeri Raden Fatah Palembang,” J. Inform., vol. 7, no. 2, pp. 97–106, 2020, doi: 10.31294/ji.v7i2.7723.

M. M. Effendi and A. Setiawan, “Menentukan Prediksi Kelulusan Siswa Dengan Membandingkan Algoritma C4.5 Dan Naive Bayes Studi Kasus Smkn. 1 Cikarang Selatan,” SIGMA - J. Teknol. Pelita Bangsa, vol. 11, no. 3, pp. 143–148, 2020.




DOI: https://doi.org/10.36987/informatika.v12i2.5767

Hasil gambar untuk committee on publication ethics logo

Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE)dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). INFORMATIKA berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.

 

INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855

Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418