Analisis Data Mining Absensi Siswa SMP Negeri 1 Bilah Barat Dengan Metode Algoritma K-Means Cluestering
Abstract
The presence of students in Junior High School has significant implications in the world of Education. The success of education depends not only on the content of the curriculum and the quality of teaching, but is also strongly linked to the extent to which students are regularly present at school. The problem of student absenteeism in junior high school is an issue that should not be ignored, as it can negatively affect academic achievement, the development of social skills, and the overall educational experience of students. A student's absence from school can be caused by a complex of factors. These factors include personal problems such as lack of motivation, family problems such as domestic conflicts, poor physical or mental health, as well as environmental factors such as school accessibility. A deep understanding of the reasons behind student absenteeism is an important first step to addressing this problem. Student attendance Data that has been accumulated over the past 6 months can be a valuable source of information in analyzing student attendance. However, extracting useful information from large and complex attendance data is a challenging task. This is where Data Mining comes in. Data Mining is an approach that enables the identification of patterns, trends, and valuable information in large and complex data.
Keywords
Full Text:
PDFReferences
Anggada Maulana, “Konsep Dasar Data Mining,” Konsep Data Mining, vol. 1, pp. 1–16, 2018.
Arsyad, “Bab II kajian teori,” BAB 2 Kajian teori, no. 1, pp. 16–72, 2017.
B. A. B. II, “Tahapan Knowlegde Discovery in Databases (KDD),” pp. 1–11, 2007.
D. Hidayatullah, “Chemical Information and Modeling,” Journal of Chemical Information and Modeling, vol. 53, no. 9, pp. 8–24, 2018.
D. M. Budanis and A. Wisnu Wardana, “Sistem Pendukung Keputusan Penentuan Resep,” Jurnal Ilmiah NERO, vol. 5, no. 1, pp. 47–57, 2020.
D. Tilang and D. I. Instansi, “Media Informatika Vol.20 No.2 (2021) 109,” vol. 20, no. 2, pp. 109–121, 2021.
F. J. Martínez‐López and J. Casillas, “ KDD /Data Mining ,” Wiley Encyclopedia of Management, pp. 1–1, 2015, doi: 10.1002/9781118785317.weom090075.
K. Handoko, “Penerapan Data Mining Dalam Meningkatkan Mutu Pembelajaran Pada Instansi Perguruan Tinggi Menggunakan Metode K-Means Clustering (Studi Kasus Di Program Studi Tkj Akademi Komunitas Solok Selatan),” Jurnal Teknologi dan Sistem Informasi, vol. 02, no. 03, pp. 31–40, 2016, [Online]. Available: http://teknosi.fti.unand.id/index.php/teknosi/article/view/70
M. Benri, H. Metisen, and S. Latipa, “Analisis Clustering Menggunakan Metode K-Means Dalam Pengelompokkan Penjualan Produk Pada Swalayan Fadhila,” Jurnal Media Infotama, vol. 11, no. 2, pp. 110–118, 2015, https://core.ac.uk/download/pdf/287160954.pdf
N. P. Wulandari, “Studi Identifikasi Faktor-Faktor yang Mempengaruhi Stres Belajar Siswa Full Days SMP Muhammadiyah 01 Medan,” Universitas Medan Area, pp. 12–26, 2018.
T. Alfina, B. Santosa, and A. R. Barakbah, “Analisa Perbandingan Metode Hierarchical Clustering, K-means dan Gabungan Keduanya dalam Cluster Data,” Teknik Its, vol. 1, no. 1, pp. 521–525, 2012, http://www.ejurnal.its.ac.id/index.php/teknik/article/view/1794
W. Lestari, “Clustering Data Mahasiswa Menggunakan Algoritma K-Means Untuk Menunjang Strategi Promosi (Studi Kasus : STMIK Bina Bangsa Kendari),” Simkom, vol. 4, no. 2, pp. 35–48, 2019, doi: 10.51717/simkom.v4i2.37
W. SETIA, “… Dengan Pendekatan Client Centered Therapy Dalam Mengatasi Kesulitan Belajar Peserta Didik Kelas Viii Di Smp Negeri 2 Batu …,” 2022.
DOI: https://doi.org/10.36987/informatika.v12i2.5773
INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855
Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418