Implementasi Deep Learning Untuk Menentukan Harga Buah Sawit
Abstract
This study aims to analyze the price of palm oil using Convolutional Neural Network (CNN) method in deep learning. CNN was chosen for its ability to process complex data and recognize patterns from diverse data. The stages of research include data analysis, data pre-processing, predictive model design for CNN method, CNN classification model prediction results, CNN method evaluation, and CNN method evaluation results. This study aims to produce a model that can predict the price of oil palm with high accuracy, based on data covering a variety of characteristics of farmers and the quality of oil palm crops. Prediction results were conducted using data from 50 oil palm farmers. From the prediction, as many as 23 data farmers get a price of IDR 2,300, 13 other farmers get a price of IDR 2,000, and the remaining 14 data farmers get a price of IDR 1,800. The results of this prediction are based on data from farmers and the quality of oil palm crops they grow and produce. By utilizing the CNN method, the model can capture various factors that affect the price of palm oil, including the quality of palm fruit and agricultural conditions. Evaluation of the CNN method showed very good results, with almost perfect accuracy. This method managed to predict palm oil prices very precisely, showing that CNN can be an effective tool in the analysis of palm oil prices. The results of this evaluation confirmed that the CNN method can be relied upon to provide accurate predictions, helping farmers and palm oil industry players in determining prices that are in accordance with the quality and condition of the crop.
Keywords
Full Text:
PDFReferences
Dharma AS, Sitorus JMP, Hatigoran A. Comparison of Residual Network-50 and Convolutional Neural Network Conventional Architecture For Fruit Image Classification. SinkrOn. 2023;8(3):1863-1874. doi:10.33395/sinkron.v8i3.12721
Flores VA, Permatasari PA, Jasa L. Penerapan Web Scraping Sebagai Media Pencarian dan Menyimpan Artikel Ilmiah Secara Otomatis Berdasarkan Keyword. Maj Ilm Teknol Elektro. 2020;19(2):157. doi:10.24843/mite.2020.v19i02.p06
Hindarto D. Enhancing Road Safety with Convolutional Neural Network Traffic Sign Classification. Sinkron. 2023;8(4):2810-2818. doi:10.33395/sinkron.v8i4.13124
Karo Karo IM, Karo Karo JA, Ginting M, et al. Comparison of Activation Functions on Convolutional Neural Networks (CNN) to Identify Mung Bean Quality. Sinkron. 2023;8(4):2757-2764. doi:10.33395/sinkron.v8i4.13107
Nurdin H, Sartini S, Sumarna S, Maulana YI, Riyanto V. Prediction of Student Graduation with the Neural Network Method Based on Particle Swarm Optimization. Sinkron. 2023;8(4):2353-2362. doi:10.33395/sinkron.v8i4.12973
Panggabean E, Sitio AS, Lase Y, Junita D. Human resources development strategy use Backpropagation Artificial Neural Networks. Sinkron. 2023;8(3):1782-1791. doi:10.33395/sinkron.v8i3.12684
Sihite EK, Rangkuti YM, Karo IK. Pembangunan Webgis Untuk Penderita Gizi Buruk Di Kota Medan Berdasarkan Hasil Clustering Algoritma DBSCAN. J SAINTIKOM (Jurnal Sains Manaj Inform dan Komputer). 2024;23(1):77. doi:10.53513/jis.v23i1.952
Suherman E, Hindarto D, Makmur A, Santoso H. Comparison of Convolutional Neural Network and Artificial Neural Network for Rice Detection. Sinkron. 2023;8(1):247-255. doi:10.33395/sinkron.v8i1.11944
Wedha ABPB, Rahman B, Hindarto D, Wedha BY. Drowsy Detection in the Eye Area using the Convolutional Neural Network. SinkrOn. 2023;8(2):1097-1107. doi:10.33395/sinkron.v8i2.12386
Willian S, Rochadiani TH, Sofian T. Design of Batak Toba Script Recognition System Using Convolutional Neural Network Algorithm. Sinkron. 2023;8(3):1609-1618. doi:10.33395/sinkron.v8i3.12617
DOI: https://doi.org/10.36987/informatika.v12i3.6029
INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855
Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418