Analisis Faktor Yang Mempengaruhi Kepuasan Pegawai Dinas Pangan: Pendekatan Menggunakan Algoritma C4.5

Tongku Hamonangan Harahap, Ibnu Rasyid Munthe, Angga Putra Juledi

Abstract


The level of satisfaction is an important measure in evaluating the extent to which the needs and expectations of a person or group are met by a product, service, or experience. The concept is often used in a business context to measure how well a product or service meets customer expectations. The level of satisfaction can be measured through various methods such as surveys, interviews or analysis of consumer behavior data. The results of this satisfaction level evaluation provide valuable insights for companies in improving the quality of their products or services, as well as maintaining customer loyalty. Therefore, the author will conduct a study on the level of employee satisfaction Department of food using machine learning approach with C4.5 method. This study aims to explore the patterns and factors that significantly affect the level of employee satisfaction in the context of the Department of food. The C4.5 method was chosen because of its ability to handle complex and diverse data, as well as being able to provide insight into the relationship of complex and non-linear variables.


Keywords


Employee Satisfaction, Data Mining, Algorithm C4.5.

Full Text:

PDF

References


A. Esteban, A. Zafra, and S. Ventura, Data mining in predictive maintenance systems: A taxonomy and systematic review, no. March. 2022. doi: 10.1002/widm.1471.

A. S. A. & R. A. H. & J. k. A. & Z. T. A. & A. A. Z. & B. B. Zaidan et al., “Role of biological Data Mining and MachineLearningTechniques in Detecting and Diagnosing the Novel Coronavirus (COVID-19): A Systematic Review,” J. Med. Syst., 2020.

A. Septiarini, Rizqi Saputra, Andi Tejawati, and Masna Wati, “Deteksi Sarung Samarinda Menggunakan Metode C4.5 Berbasis Pengolahan Citra,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 5, pp. 927–935, 2021, doi: 10.29207/resti.v5i5.3435.

A. Yudhana, I. Riadi, and M. R. Djou, “Pengembangan Layanan Kependudukan Dan Pencatatan Sipil Menggunakan Algoritma Naïve Bayes,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 1062, 2022, doi: 10.30865/jurikom.v9i4.4515.

Dr. V. Suma, “Data Mining based Prediction of Demand in Indian Market for Refurbished Electronics,” J. Soft Comput. Paradig., vol. 2, no. 3, pp. 153–159, 2020, doi: 10.36548/jscp.2020.3.002.

E. Rasywir, R. Sinaga, and Y. Pratama, “Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network (CNN),” Paradig. - J. Komput. dan Inform., vol. 22, no. 2, pp. 117–123, 2020, doi: 10.31294/p.v22i2.8907.

H. M. Siregar, “Implementasi Metode C4.5 Pada Perancangan Aplikasi Sistem Pakar Diagnosa Bronkiektasis,” Bull. Inf. Technol., vol. 1, no. 3, p. 6, 2020.

I. P. Ninditama, I. P. Ninditama, W. Cholil, M. Akbar, and D. Antoni, “Klasifikasi Keluarga Sejahtera Study Kasus : Kecamatan Kota Palembang,” vol. 15, no. 2, pp. 37–49, 2020.

L. J. Muhammad, M. M. Islam, S. S. Usman, and S. I. Ayon, “Predictive Data Mining Models for Novel Coronavirus (COVID-19) Infected Patients’ Recovery,” SN Comput. Sci., vol. 1, no. 4, pp. 1–7, 2020, doi: 10.1007/s42979-020-00216-w.

N. K. Sriwinarti and P. Juniarti, “Analisis Metode K-Nearest Neighbors ( K-NN ) Dan C4.5 Dalam Memprediksi Kelulusan Mahasiswa ( Analysis of K-Nearest Neighbors ( K-NN ) and C4.5 Methods in Predicting Student Graduation ),” vol. 3, no. 2, pp. 106–112, 2021.

R. Aulia et al., “Prediksi Perguruan Tinggi Negeri dengan Menggunakan Metode C4.5,” pp. 106–111, 2020.

R. Retnosari, “Analisa Kelayakan Kredit Usaha Mikro Berjalan pada Perbankan dengan Metode C4.5,” PROSISKO J. Pengemb. Ris. dan Obs. Sist. Komput., vol. 8, no. 1, pp. 53–59, 2021, [Online]. Available: https://e-jurnal.lppmunsera.org/index.php/PROSISKO/article/view/2848

S. AriePrayoga, I. Nawangsih, and T. NgudiWiyatno, “Implementasi Metode Naïve Bayes Classifier Untuk Identifikasi Jenis Jamur,” Pelita Teknol. J. Ilm. Inform. Arsit. dan Lingkung., vol. 14, no. 2, pp. 134–144, 2019.

Y. Cui, “Intelligent Recommendation System Based on Mathematical Modeling in Personalized Data Mining,” Math. Probl. Eng., vol. 2021, 2021, doi: 10.1155/2021/6672036.




DOI: https://doi.org/10.36987/informatika.v12i3.6118

Hasil gambar untuk committee on publication ethics logo

Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE)dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). INFORMATIKA berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.

 

INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855

Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418