Penerapan Metode KNN untuk Menentukan Minat Calon Mahasiswa
Abstract
This study focuses on the implementation of data mining to determine the interests of prospective male and female students in the Informatics Management Department using the K-Nearest Neighbors (KNN) method. The analysis process is carried out through the Knowledge Discovery in Databases (KDD) stages, which include data selection, pre-processing, transformation, data mining, and pattern evaluation. The KDD stage ensures that the data used has been prepared and processed properly to produce an accurate and relevant model. The KNN method is used to classify sample data consisting of 82 prospective male and female students. The results of this study indicate that 63 out of 82 prospective students are interested in the Informatics Management Department, while 19 other prospective students are not interested. This classification process shows that the KNN method is able to identify the interests of prospective students with a high level of accuracy, providing useful information for universities in understanding the preferences of their prospective students. Evaluation of the research results using two evaluation tools, namely Test and Score and Confusion Matrix, showed perfect results with an accuracy of 100%. Both of these evaluation tools are consistent in assessing the performance of the KNN model, confirming that this model works very well in classifying prospective student interests. In conclusion, the KNN method is proven to be effective and reliable in determining prospective students' interest in the Informatics Management Department, providing a strong foundation for similar applications in the future.
Keywords
Full Text:
PDFReferences
A. Ayu, D. Sulistyawati, and M. Sadikin, “SISTEMASI: Jurnal Sistem Informasi Penerapan Algoritma K-Medoids untuk Menentukan Segmentasi Pelanggan,” vol. 10, pp. 516–526, 2021, [Online]. Available: http://sistemasi.ftik.unisi.ac.id
E. Retnoningsih and R. Pramudita, “Mengenal Machine Learning Dengan Teknik Supervised Dan Unsupervised Learning Menggunakan Python,” Bina Insa. Ict J., vol. 7, no. 2, p. 156, 2020, doi: 10.51211/biict.v7i2.1422.
F. Rozi, M. Bagoes, and S. Junianto, “Penerapan Machine Learning Untuk Prediksi Harga Saham PT.Telekomunikasi Indonesia Tbk Menggunakan Algoritma K-Nearest Neighbors,” J. Inform. MULTI, vol. 1, no. 1, pp. 18–24, 2023.
H. A. Pratama, G. J. Yanris, M. Nirmala, and S. Hasibuan, “Implementation of Data Mining for Data Classification of Visitor Satisfaction Levels,” vol. 8, no. 3, pp. 1832–1851, 2023.
H. Henderi, “Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer,” IJIIS Int. J. Informatics Inf. Syst., vol. 4, no. 1, pp. 13–20, 2021, doi: 10.47738/ijiis.v4i1.73.
I. P. Ninditama, I. P. Ninditama, W. Cholil, M. Akbar, and D. Antoni, “Klasifikasi Keluarga Sejahtera Study Kasus : Kecamatan Kota Palembang,” vol. 15, no. 2, pp. 37–49, 2020.
K. Ma, “Analisis Penerapan Algoritma ID3 dalam Mendiagnosis Kesuburan Pria,” 2019.
K. N. Di, K. P. P. Pratama, C. Dua, P. Studi, K. Akuntansi, and S. I. Cirebon, “JURNAL DATA SCIENCE & INFORMATIKA ( JDSI ) Klasifikasi Pemberian Sanksi Pajak Dengan Metode,” vol. 1, no. 2, pp. 41–45, 2021.
K. N. Neighbor, A. Pratama, F. Ali, I. Ade, and R. Rinaldi, “JURNAL DATA SCIENCE & INFORMATIKA ( JDSI ) Klasifikasi Penerima Beasiswa Dengan Menggunakan Algoritma,” vol. 1, no. 1, pp. 11–15, 2021.
M. Ula, R. Zulhusna, R. P. Fhonna, and A. Pratama, “Penerapan Model Klasifikasi K-Nearest Neighbor Dalam Pencarian Kesesuaian Pekerjaan,” 2022, doi: 10.47002/metik.v6i1.343.
N. K. Sriwinarti and P. Juniarti, “Analisis Metode K-Nearest Neighbors ( K-NN ) Dan Naive Bayes Dalam Memprediksi Kelulusan Mahasiswa ( Analysis of K-Nearest Neighbors ( K-NN ) and Naive Bayes Methods in Predicting Student Graduation ),” vol. 3, no. 2, pp. 106–112, 2021.
P. Arsi, L. N. Hidayati, and A. Nurhakim, “Komparasi Model Klasifikasi Sentimen Issue Vaksin Covid-19 Berbasis Platform Instagram,” vol. 6, pp. 459–466, 2022, doi: 10.30865/mib.v6i1.3509.
R. Ali, M. M. Yusro, M. S. Hitam, and M. Ikhwanuddin, “Machine Learning With Multistage Classifiers For Identification Of Of Ectoparasite Infected Mud Crab Genus Scylla,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 19, no. 2, pp. 406–413, 2021, doi: 10.12928/TELKOMNIKA.v19i2.16724.
R. G. de Luna, E. P. Dadios, A. A. Bandala, and R. R. P. Vicerra, “Tomato growth stage monitoring for smart farm using deep transfer learning with machine learning-based maturity grading,” Agrivita, vol. 42, no. 1, pp. 24–36, 2020, doi: 10.17503/agrivita.v42i1.2499.
S. Diansyah, “Jurnal Sistim Informasi dan Teknologi Klasifikasi Tingkat Kepuasan Pengguna dengan Menggunakan Metode K-Nearest Neighbour ( KNN ),” vol. 4, pp. 1–3, 2022, doi: 10.37034/jsisfotek.v4i1.114.
W. Sudrajat, I. Cholid, and J. Petrus, “Wahyu Sudrajat et al, Penerapan Algoritma K-Means Untuk …………………,” p. 27, 2022.
Y. Indah Lestari and S. Defit, “Jurnal Informatika Ekonomi Bisnis Prediksi Tingkat Kepuasan Pelayanan Online Menggunakan Metode Algoritma C.45,” vol. 3, pp. 148–154, 2021, doi: 10.37034/infeb.v3i3.104.
DOI: https://doi.org/10.36987/informatika.v12i3.6153
INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855
Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418