Analisis Perbandingan Algoritma C4.5 Dan Naive Bayes Dalam Menilai Kelayakan Bantuan Program Keluarga Harapan

Taufik Molid Hidayat Hasibuan, Syaiful Zuhri Harahap, Rahma Muti Ah

Abstract


Social assistance is a form of government intervention that aims to help people who are in less fortunate economic conditions. This form of assistance can be in the form of cash assistance, food assistance, or health service assistance. Social assistance programs are often aimed at reducing poverty, addressing hunger, and improving the overall well-being of society. Program Keluarga Harapan (PKH) is a form of conditional social assistance launched by the government of Indonesia to help poor and vulnerable families. The Program aims to improve the quality of life of poor families through the provision of cash assistance accompanied by obligations for recipients to meet certain requirements, such as ensuring their children attend school and regular health checks at health facilities. With the PKH, it is expected to improve the access of poor families to education and health services, which in turn will improve the quality of Indonesian human resources. Thus, the author can evaluate the advantages and disadvantages of each method in the context of the data used. In addition, this comparative analysis also aims to provide more informative recommendations for policy makers. If one of the methods proves to be superior, then it can be adopted to improve the selection process for CCT recipients in the future. However, if both methods have balanced performance, a combination or integration of the two can be the optimal solution. By comparing the performance of Naive Bayes and the C4.5 algorithm, the study not only focused on identifying the right recipients, but also provided valuable insights in choosing the most effective analytical tool for the purpose.

Keywords


C4.5 Algorithm, Naive Bayes, Assessing Feasibility, Hope Family Program.

Full Text:

PDF

References


A. Alam, D. A. F. Alana, and C. Juliane, “Comparison Of The C.45 And Naive Bayes Algorithms To Predict Diabetes,” Sinkron, vol. 8, no. 4, pp. 2641–2650, 2023, doi: 10.33395/sinkron.v8i4.12998.

A. N. Z. Hidayah and A. F. Rozi, “Penerapan Data Mining Dalam Menentukan Kinerja Karyawan Terbaik Dengan Menggunakan Metode Algoritma C4.5 (Studi Kasus: Universitas Mercu Buana Yogyakarta),” J. Inf. Syst. Artif. Intell., vol. 1, no. 2, pp. 117–127, 2021.

E. Retnoningsih and R. Pramudita, “Mengenal Machine Learning Dengan Teknik Supervised Dan Unsupervised Learning Menggunakan Python,” Bina Insa. Ict J., vol. 7, no. 2, p. 156, 2020, doi: 10.51211/biict.v7i2.1422.

F. Elfaladonna and A. Rahmadani, “Analisa Metode Classification-Decission Tree Dan Algoritma C.45 Untuk Memprediksi Penyakit Diabetes Dengan Menggunakan Aplikasi Rapid Miner,” SINTECH (Science Inf. Technol. J., vol. 2, no. 1, pp. 10–17, 2019, doi: 10.31598/sintechjournal.v2i1.293.

H. Asrawi, E. Utami, and A. Yaqin, “LSTM and Bidirectional GRU Comparison for Text Classification,” Sinkron, vol. 8, no. 4, pp. 2264–2274, 2023, doi: 10.33395/sinkron.v8i4.12899.

I. P. Ninditama, I. P. Ninditama, W. Cholil, M. Akbar, and D. Antoni, “Klasifikasi Keluarga Sejahtera Study Kasus : Kecamatan Kota Palembang,” vol. 15, no. 2, pp. 37–49, 2020.

M. E. Apriyani, R. A. Maskuri, M. H. Ratsanjani, A. N. Pramudhita, and R. Rawansyah, “Digital Forensic Investigates Sexual Harassment on Telegram using Naïve Bayes,” Sinkron, vol. 8, no. 3, pp. 1409–1417, 2023, doi: 10.33395/sinkron.v8i3.12514.

N. K. Sriwinarti and P. Juniarti, “Analisis Metode K-Nearest Neighbors ( K-NN ) Dan Naive Bayes Dalam Memprediksi Kelulusan Mahasiswa ( Analysis of K-Nearest Neighbors ( K-NN ) and Naive Bayes Methods in Predicting Student Graduation ),” vol. 3, no. 2, pp. 106–112, 2021.

P. Karczmarek, A. Kiersztyn, W. Pedrycz, and E. Al, “K-Means-based isolation forest,” Knowledge-Based Syst., vol. 195, p. 105659, 2020, doi: 10.1016/j.knosys.2020.105659.

R. F. Nasution, M. H. Dar, and F. A. Nasution, “Implementation of the Naïve Bayes Method to Determine Student Interest in Gaming Laptops,” Sinkron, vol. 8, no. 3, pp. 1709–1723, 2023, doi: 10.33395/sinkron.v8i3.12562.

R. Forest and N. Bayes, “Perbandingan Akurasi , Recall , dan Presisi Klasifikasi pada Algoritma,” vol. 5, no. April, pp. 640–651, 2021, doi: 10.30865/mib.v5i2.2937.

R. J. Marcellina, B. Karyadi, D. Parlindungan, M. Uliyandari, and M. Sutarno, “Pengembangan E-Booklet Lemea Lebong sebagai Media Pembelajaran Materi Bioteknologi untuk Siswa SMP,” BIOEDUSAINSJurnal Pendidik. Biol. dan Sains, vol. 6, no. 1, pp. 110–119, 2023, doi: 10.31539/bioedusains.v6i1.5923.

R. Rahman and F. Fauzi Abdulloh, “Performance of Various Naïve Bayes Using GridSearch Approach In Phishing Email Dataset,” Sinkron, vol. 8, no. 4, pp. 2336–2344, 2023, doi: 10.33395/sinkron.v8i4.12958.

S. Diansyah, “Jurnal Sistim Informasi dan Teknologi Klasifikasi Tingkat Kepuasan Pengguna dengan Menggunakan Metode K-Nearest Neighbour ( KNN ),” vol. 4, pp. 1–3, 2022, doi: 10.37034/jsisfotek.v4i1.114.

Y. Indah Lestari and S. Defit, “Jurnal Informatika Ekonomi Bisnis Prediksi Tingkat Kepuasan Pelayanan Online Menggunakan Metode Algoritma C.45,” vol. 3, pp. 148–154, 2021, doi: 10.37034/infeb.v3i3.104.




DOI: https://doi.org/10.36987/informatika.v12i3.6154

Hasil gambar untuk committee on publication ethics logo

Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE)dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). INFORMATIKA berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.

 

INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855

Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418