Application of Apriori and Fp-Growth Methods in Analyzing Book Lending Patterns Penerapan Metode Apriori dan Fp-Growth dalam Analisis Pola Peminjaman Buku

Rahma Faradilah, Syaiful Zuhri Harahap, Irmayanti Irmayanti

Abstract


Clustering of book borrowing patterns in the University of Labuhanbatu library aims to identify and understand student preferences and habits in borrowing books. With this analysis, the library can be more effective in managing book collections, ensuring the availability of frequently borrowed books, and improving the quality of service according to student needs. Using clustering techniques also helps in designing a more targeted book procurement strategy, so that existing resources can be optimally utilized to support the teaching and learning process. In this study, the methods used are Kf-Growth and Apriori to identify book borrowing patterns. Kf-Growth is used to find frequent itemsets or collections of books that are often borrowed together, while Apriori is used to generate association rules that reveal the relationships between borrowed books. Both of these methods allow for a more in-depth and comprehensive analysis of book borrowing patterns in the library, with the ability to handle large amounts of data and identify significant relationships between items. This process involves several stages, including data preprocessing, algorithm application, and evaluation of the results to ensure the validity and accuracy of the resulting clustering. The results of the clustering analysis show a very good confidence value, with many male and female students borrowing the book "Pengantar Akuntansi" consistently. This borrowing pattern shows that books related to economics and accounting have a high level of demand. The Kf-Growth and Apriori methods have proven to be very effective in clustering, providing accurate and reliable results. With these results, the Labuhanbatu University library can take more informative and strategic steps in managing book collections, ensuring that frequently borrowed books are always available, and improving the borrowing experience for students.

Keywords


Apriori Method, Fp-Growth Method, Clustering.

Full Text:

PDF

References


A. A. Hidayat, N. Hendrastuty, and Styawati, “Penerapan Algoritma Apriori Pada Apotek Shaqeena Untuk Memprediksi Penjualan Berbasis Android,” J. Teknol. dan Sist. Inf., vol. 4, no. 3, pp. 302–312, 2023.

A. Anggrawan, M. Mayadi, and C. Satria, “Menentukan Akurasi Tata Letak Barang dengan Menggunakan Algoritma Apriori dan Algoritma FP-Growth,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, pp. 125–138, 2021, doi: 10.30812/matrik.v21i1.1260.

A. Erfina, Melawati, and N. Destria Arianti, “Penerapan Metode Data Mining Terhadap Data Transaksi Penjualan Menggunakan Algoritma Apriori,” J. Ris. Sist. Inf. dan Teknol. Inf., vol. 2, no. 3, pp. 14–22, 2020, doi: 10.52005/jursistekni.v2i3.62.

A. J. P. Sibarani, “Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 262–276, 2020, doi: 10.35957/jatisi.v7i2.195.

A. R. Riszky and M. Sadikin, “Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan,” J. Teknol. dan Sist. Komput., vol. 7, no. 3, pp. 103–108, 2019, doi: 10.14710/jtsiskom.7.3.2019.103-108.

B. Sinaga, M. Marpaung, I. R. B. Tarigan, and K. Tania, “Implementation of Stock Goods Data Mining Using the Apriori Algorithm,” Sinkron, vol. 8, no. 3, pp. 1280–1292, 2023, doi: 10.33395/sinkron.v8i3.12852.

F. S. Amalia, S. Setiawansyah, and ..., “Analisis Data Penjualan Handphone Dan Elektronik Menggunakan Algoritma Apriori (Studi Kasus: Cv Rey Gasendra),” … J. Telemat. …, vol. 2, no. 1, pp. 1–6, 2021, [Online]. Available: https://ejurnal.teknokrat.ac.id/index.php/telefortech/article/view/1810

K. A. Mahasiswa, R. Rachmatika, and A. Bisri, “Perbandingan Model Klasifikasi untuk Evaluasi,” vol. 6, no. 3, pp. 417–422, 2020.

M. Saroh, “Penerapan Metode Apriori Dalam Menentukan Pola Penjualan Pada Toko Sembako Mandailing,” Technol. J. Ilm., vol. 13, no. 4, p. 316, 2022, doi: 10.31602/tji.v13i4.8043.

N. Agustiani, D. Suhendro, W. Saputra, and S. Tunas Bangsa Pematangsiantar, “Penerapan Data Mining Metode Apriori Dalam Implementasi Penjualan Di Alfamart,” Pros. Semin. Nas. Ris. Dan Inf. Sci., vol. 2, pp. 300–304, 2020.

N. Syahputri, “Penerapan Data Mining Asosiasi pada Pola Transaksi dengan Metode Apriori,” J. Sains Komput. Inform. (J-SAKTI, vol. 4, no. 2, pp. 728–736, 2020.

S. Z. Harahap and A. Nastuti, “Teknik Data Mining Untuk Penentuan Paket Hemat Sembako,” J. Ilm. Fak. Sains dan Teknol., vol. 7, no. 3, pp. 111–119, 2019.

W. Cholil, A. R. Dalimunthi, and L. Atika, “Model Data Mining Dalam Mengidentifikasi Pola Laju Pertumbuhan Antar Sektor Ekonomi di Provinsi Sumatera Selatan dan Bangka Belitung,” Teknika, vol. 8, no. 2, pp. 103–109, 2019, doi: 10.34148/teknika.v8i2.181.

Y. Andini et al., “Penerapan Data Mining Terhadap Tata Letak Buku,” J. Technol. Informatics Comput. Syst., vol. XI, no. 1, pp. 9–15, 2022.

Y. Indah Lestari and S. Defit, “Jurnal Informatika Ekonomi Bisnis Prediksi Tingkat Kepuasan Pelayanan Online Menggunakan Metode Algoritma C.45,” vol. 3, pp. 148– 154, 2021, doi: 10.37034/infeb.v3i3.104.




DOI: https://doi.org/10.36987/informatika.v12i3.6155

Hasil gambar untuk committee on publication ethics logo

Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE)dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). INFORMATIKA berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.

 

INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855

Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418