Analisis Pola Pembelian Melalui Ponsel Menggunakan Algoritma Apriori dan Fp–Growth Pada Millenium Ponsel
Abstract
The purpose of this research is to understand the main factors that influence consumer decisions in purchasing the device. By exploring information about consumer preferences, needs, and behavior, this study seeks to identify purchasing trends and understand how aspects such as mobile phone features, price, and brand influence consumer choices. The main objective of this study is to provide in- depth insights to technology industry players so that they can develop more effective and relevant marketing and product strategies to meet dynamic market needs. To achieve this goal, this study uses the Apriori and FP-Growth methods, which are data mining algorithms that are effective in finding associations and patterns in transaction data. The Apriori method focuses on identifying the frequency of occurrence of itemsets and forming association rules based on support and confidence values, while FP- Growth uses a tree approach to store and extract frequently occurring patterns more efficiently. Both methods allow for in-depth analysis of mobile phone purchase data, so that complex patterns can be revealed more accurately and quickly. The results of this study indicate that there is a very clear mobile phone purchasing pattern among consumers, with confidence values reaching 90% for some association rules. For example, consumers who purchase phones with AMOLED displays tend to also choose large battery capacities from certain brands. These patterns indicate strong and consistent preferences across consumer groups, providing manufacturers with opportunities to target specific market segments with tailored product offerings. These findings not only provide valuable insights into consumer behavior but also help companies optimize their marketing strategies and increase their competitiveness in the technology industry.
Keywords
Full Text:
PDFReferences
A. A. Hidayat, N. Hendrastuty, and Styawati, “Penerapan Algoritma Apriori Pada Apotek Shaqeena Untuk Memprediksi Penjualan Berbasis Android,” J. Teknol. dan Sist. Inf., vol. 4, no. 3, pp. 302–312, 2023.
A. J. P. Sibarani, “Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 262–276, 2020, doi: 10.35957/jatisi.v7i2.195.
A. R. Riszky and M. Sadikin, “Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan,” J. Teknol. dan Sist. Komput., vol. 7, no. 3, pp. 103–108, 2019, doi: 10.14710/jtsiskom.7.3.2019.103-108.
B. Anwar, A. Ambiyar, and F. Fadhilah, “Application of the FP-Growth Method to Determine Drug Sales Patterns,” Sinkron, vol. 8, no. 1, pp. 405–414, 2023, doi: 10.33395/sinkron.v8i1.12004.
B. Sinaga, M. Marpaung, I. R. B. Tarigan, and K. Tania, “Implementation of Stock Goods Data Mining Using the Apriori Algorithm,” Sinkron, vol. 8, no. 3, pp. 1280–1292, 2023, doi: 10.33395/sinkron.v8i3.12852.
F. S. Amalia, S. Setiawansyah, and ..., “Analisis Data Penjualan Handphone Dan Elektronik Menggunakan Algoritma Apriori (Studi Kasus: Cv Rey Gasendra),” … J. Telemat. …, vol. 2, no. 1, pp. 1–6, 2021, [Online]. Available: https://ejurnal.teknokrat.ac.id/index.php/telefortech/article/view/1810
M. Saroh, “Penerapan Metode Apriori Dalam Menentukan Pola Penjualan Pada Toko Sembako Mandailing,” Technol. J. Ilm., vol. 13, no. 4, p. 316, 2022, doi: 10.31602/tji.v13i4.8043.
N. Agustiani, D. Suhendro, W. Saputra, and S. Tunas Bangsa Pematangsiantar, “Penerapan Data Mining Metode Apriori Dalam Implementasi Penjualan Di Alfamart,” Pros. Semin. Nas. Ris. Dan Inf. Sci., vol. 2, pp. 300–304, 2020.
R. Amelia and D. P. Utomo, “Analisa Pola Pemesanan Produk Modern Trade Independent Dengan Menerepakan Algoritma Fp. Growth (Studi Kasus: Pt. Adam Dani Lestari),” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 416– 423, 2019, doi: 10.30865/komik.v3i1.1622.
S. Suhada, D. Ratag, G. Gunawan, D. Wintana, and T. Hidayatulloh, “Penerapan Algoritma Fp-Growth Untuk Menentukan Pola Pembelian Konsumen Pada Ahass Cibadak,” Swabumi, vol. 8, no. 2, pp. 118–126, 2020, doi: 10.31294/swabumi.v8i2.8077.
S. Z. Harahap and A. Nastuti, “Teknik Data Mining Untuk Penentuan Paket Hemat Sembako,” J. Ilm. Fak. Sains dan Teknol., vol. 7, no. 3, pp. 111–119, 2019.
W. Cholil, A. R. Dalimunthi, and L. Atika, “Model Data Mining Dalam Mengidentifikasi Pola Laju Pertumbuhan Antar Sektor Ekonomi di Provinsi Sumatera Selatan dan Bangka Belitung,” Teknika, vol. 8, no. 2, pp. 103–109, 2019, doi: 10.34148/teknika.v8i2.181.
Y. Andini et al., “Penerapan Data Mining Terhadap Tata Letak Buku,” J. Technol. Informatics Comput. Syst., vol. XI, no. 1, pp. 9–15, 2022.
Y. Andini, J. T. Hardinata, and Y. P. Purba, “Penerapan Data Mining pada Tata Letak Buku Di Perpustakaan Sintong Bingei Pematangsiantar dengan Metode Apriori,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 7, no. 1, p. 13, 2022, doi: 10.30645/jurasik.v7i1.410.
DOI: https://doi.org/10.36987/informatika.v12i3.6158
INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855
Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418