Integrasi Model Pembelajaran Mesin dalam Game Menggunakan Gerakan Tangan

Yomei Hendra, Putri Sakinah, Fajar Maulana, Kiki Hariani Manurung

Abstract


This study develops a Tetris game controlled through hand gestures using a machine learning model. The primary objective of this research is to create an interactive and responsive gaming experience by utilizing hand gesture detection as the main control mechanism. A hand gesture dataset was collected from videos segmented into individual frames, which were then analyzed using MediaPipe to detect and label gestures. The machine learning model employs a Convolutional Neural Network (CNN) trained to recognize hand gesture patterns and translate them into commands within the game. After implementation, an evaluation was conducted by distributing questionnaires to 18 Informatics students at Adzkia University to assess the system's comfort and responsiveness. The questionnaire results showed a high satisfaction level, with an average score of 84.56, covering evaluations of control ease, gesture detection accuracy, and system responsiveness. The average score for ease of use reached 85, indicating that the majority of users found the gesture-based controls comfortable. This study demonstrates that applying machine learning models in gesture-based control games can provide a more interactive and responsive experience, with potential applications in other interactive technologies.


Keywords


Machine Learning, Interactive Games, Hand Gestures, Convolutional Neural Network, Gesture Detection, Tetris.

Full Text:

PDF

References


A. C. M. Yeng, P. Y. Han, K. W. How, and O. S. Yin, “Hand Gesture Controlled Game for Hand Rehabilitation,” in Proceedings of the International Conference on Computer, Information Technology and Intelligent Computing (CITIC 2022), S.-C. Haw and K. Sonai Muthu, Eds., Dordrecht: Atlantis Press International BV, 2022, pp. 205–215. doi: 10.2991/978-94-6463-094-7_17.

A. Firmansyah, F. K. Putri, and N. N. Ramandhani, “Psikologi Perkembangan Motorik Dan Kognitif Anak Kelas Ii Sekolah Dasar Dan Implikasinya Dalam Memahami Pembelajaran,” Jurnal Pendidikan Dasar.

A. H. Nur’azizan, A. R. Ardiansyah, and R. Fernandis, “Implementasi Deteksi Bahasa Isyarat Tangan Menggunakan OpenCV dan MediaPipe,” vol. 3, 2024.

C. Peng, J. T. Hansberger, L. Cao, and V. A. Shanthakumar, “Hand gesture controls for image categorization in immersive virtual environments,” in 2017 IEEE Virtual Reality (VR), Los Angeles, CA, USA: IEEE, 2017, pp. 331–332. doi: 10.1109/VR.2017.7892311.

D. Agustiani, “Implementasi Machine Learning dan Computer Vision pada Pengembangan Sistem Otomasi Klasifikasi dan Perhitungan Kendaraan,” 2019.

D. J. Rios-Soria, S. E. Schaeffer, and S. E. Garza-Villarreal, “Hand-gesture recognition using computer-vision techniques,” 2013.

FreeTetris, "Online Tetris Game," [Online]. Available: https://www.freetetris.org/game.php. [Accessed: Nov. 22, 2024].

G. Chursin and M. Semenov, “Using computer vision in the gameplay of educational computer games,” J. Phys.: Conf. Ser., vol. 1989, no. 1, p. 012011, Aug. 2021, doi: 10.1088/1742-6596/1989/1/012011.

H. P, A. V, A. K, T. R. H. Subramaniam, and J. J. Nair, “Vision Based Gesture Recognition,” Procedia Computer Science, vol. 235, pp. 303–315, 2024, doi: 10.1016/j.procs.2024.04.031.

Indriani, Moh. Harris, and A. S. Agoes, “Applying Hand Gesture Recognition for User Guide Application Using MediaPipe:,” presented at the 2nd International Seminar of Science and Applied Technology (ISSAT 2021), Bandung, Indonesia, 2021. doi: 10.2991/aer.k.211106.017.

M. Idrees, A. Ahmad, M. A. Butt, and H. Muhammad, “Controlling Power Point Using Hand Gestures In Python,” vol. 18, no. 6, 2021.

N. L. Khikmah and R. Wulanningrum, “Perbaikan Citra Gambar Tangan Menggunakan Particle Swarm Optimization,” 2021.

O. Mishra, P. Suryawanshi, Y. Singh, and S. Deokar, “A Mediapipe-Based Hand Gesture Recognition Home Automation System,” in 2023 2nd International Conference on Futuristic Technologies (INCOFT), Belagavi, Karnataka, India: IEEE, Nov. 2023, pp. 1–6. doi: 10.1109/INCOFT60753.2023.10425411.

P. S, G. Deena, H. D, A. K B, and H. S, “Gaming using different hand gestures using artificial neural network,” EAI Endorsed Trans IoT, vol. 10, Feb. 2024, doi: 10.4108/eetiot.5169.

Riha Adatul’aisy, Ana Puspita, Ninda Abelia, Riska Apriliani, and Dwi Noviani, “Perkembangan Kognitif dan Motorik Anak Usia Dini melalui Pendekatan Pembelajaran,” Khirani, vol. 1, no. 4, pp. 82–93, Dec. 2023, doi: 10.47861/khirani.v1i4.631.

Z. Zheng, “Human Gesture Recognition in Computer Vision Research,” SHS Web Conf., vol. 144, p. 03011, 2022, doi: 10.1051/shsconf/202214403011.




DOI: https://doi.org/10.36987/informatika.v12i3.6826

Hasil gambar untuk committee on publication ethics logo

Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE)dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). INFORMATIKA berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.

 

INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855

Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418