



The increasing demand for efficient and reliable student attendance systems highlights the limitations of conventional manual methods, which are often time-consuming, prone to fraud, and lack accuracy. This study develops a real-time attendance system based on facial recognition using the YOLOv8 deep learning model integrated with TensorFlow. The system is designed to automatically detect and recognize students’ faces through a webcam and record attendance data in real time. The research method involved three main stages: face registration, model training, and attendance recording. A dataset of 4,200 face images from 14 students was collected to train the model. The recognition process used cosine similarity with a threshold of 0.7 to balance accuracy and avoid false recognition. The results showed that the system could effectively recognize student faces under varying lighting and expression conditions with high accuracy, while also recording attendance automatically and reliably. The system proved to be efficient in reducing time consumption, minimizing fraud, and ensuring more accurate attendance records. This study demonstrates that YOLOv8-based face recognition can provide an effective solution for modernizing school attendance management.
Alfeus Adi Saputra. (2022). Implementasi Face Recognition Pada Sistem Absensi Berbasis Android Menggunakan Metode Convolutional. Universitas Mercu Buana. https://lib.mercubuana.ac.id/
Arisena, B., Rifanda, A. Y., Lestari, R. A., & Saputra, S. (2023). Perancangan Sistem Absensi Pada SD Islam Durrotul Hikmah Menggunakan Scan QR Code. TEKNOBIS: Jurnal Teknologi, Bisnis dan Pendidikan, 1(1), 217–223. https://jurnalmahasiswa.com/index.php/teknobis
Efendi, J. (2021). Black-Box Testing: Analisis Kualitas Aplikasi Source Code Bank Programming. Jurnal Teknologi Informasi dan Komunikasi, 5(1). https://doi.org/10.35870/jti
Fachrul, M., Fajar, S., Ramadhan, W., & Trianto, J. (n.d.). Aplikasi Katalog Produk Berbasis Website Penerbit Cv. Eureka Media Aksara.
Hariani, R., & Fadillah, N. (2019). Deteksi Kehadiran Mahasiswa Secara Realtime Menggunakan Webcam dengan metode Viola Jones. InfoTekJar (Jurnal Nasional Informatika dan Teknologi Jaringan, 3(2), 151–154. https://doi.org/10.30743/infotekjar.v3i2.1030
Hidayatulloh, M. S. (2021). Sistem Pengenalan Wajah Menggunakan Metode YOLO (You Only Look Once). Universitas Medika.
Karlina, O. E., & Indarti, D. (2019). Pengenalan Objek Makanan Cepat Saji Pada Video dan Real Time Webcam Menggunakan Metode You Look Only Once (YOLO). Jurnal Ilmiah Informatika Komputer, 24(3), 199–208. https://doi.org/10.35760/ik.2019.v24i3.2362
Kalyani Jeslyn Lim, Clement Nathanael, Felicia Angel Wijaya, Jeson Adhi Dharma, Thaddeus Kendrick Andrian, Wilsen Soetresno, & Rahmi Yulia Ningsih. (2023). Penggunaan Bahasa Pemrograman Python untuk Memvisualisasikan Data Peluang Selamat dari Kecelakaan Titanic. Jurnal Publikasi Teknik Informatika, 2(2), 66–79. https://doi.org/10.55606/jupti.v2i2.1735
Rakasiwi, S., Kusumo, H., & Cahyo Pangestu, A. (2022). Sistem Presensi Karyawan Menggunakan Raspberry Dengan Sensor Fingerprint dan Webcam. Jurnal Teknik Informatika dan Teknologi Informasi, 2(2), 75–83. https://doi.org/10.55606/jutiti.v2i2.372
Sarosa, M., & Muna, N. (2021). Implementasi Algoritma You Only Look Once (YOLO) untuk Deteksi Objek. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(4), 787–792. https://doi.org/10.25126/jtiik.202184407
Susim, T., & Darujati, C. (2021). Pengolahan Citra untuk Pengenalan Wajah (Face Recognition) Menggunakan OpenCV. Jurnal Syntax Admiration, 2(3), 534–545. https://doi.org/10.46799/jsa.v2i3.202
Zainal, M., Suwardoyo, U., & Arfah, A. A. (2021). Dan Finger Print Berbasis Android. Jurnal Teknologi Informasi, 1(3), 1–8.
INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855
Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418