Penerapan Data mining Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademik Menggunakan Metode Naïve Bayes Dan Support Vector Machine (Studi Kasus Program Studi Sistem Informasi Universitas Labuhanbatu)

Dewi Antika, Syaiful Zuhri Harahap, Rahma Muti Ah, Angga Putra Juledi

Abstract


This study was conducted to classify public satisfaction levels using the Support Vector Machine (SVM) algorithm as the primary data analysis method. The objective of this study was to obtain an accurate and reliable prediction model for determining the Satisfaction and Dissatisfaction categories based on the available data. The theoretical basis used refers to the concept of machine learning, specifically SVM, which works by forming an optimal hyperplane to separate data classes. In addition, model evaluation theories such as the Confusion Matrix were used to objectively measure prediction performance. The research methodology included data collection, pre-processing, dividing the dataset into training and test data, and training the SVM model. Evaluation was conducted using accuracy, sensitivity, and specificity metrics to assess the model's ability to predict data accurately. The results and discussion indicate that the SVM successfully classified the majority of data correctly, with the Satisfaction class having a perfect prediction rate while the Dissatisfaction class still had a small error. Further analysis indicated the need for SVM parameter optimization to improve accuracy in the minority class. The conclusion of this study states that the SVM has good performance in classifying public satisfaction data, although it still requires refinement in recognizing certain class patterns. This finding opens up opportunities for developing more adaptive methods to improve predictive performance.


Full Text:

PDF

References


Alam, A., Alana, D. A. F., & Juliane, C. (2023). Comparison Of The C.45 And Naive Bayes Algorithms To Predict Diabetes. Sinkron, 8(4), 2641–2650. https://doi.org/10.33395/sinkron.v8i4.12998

Andrianto, R., & Irawan, F. (2023). Implementasi Metode Regresi Linear Berganda Pada Sistem Prediksi Jumlah Tonase Kelapa Sawit di PT . Paluta Inti Sawit. Jurnal Pendidikan Tambusai, 7(1), 2926–2934.

Anggriandi, D., Utami, E., & Ariatmanto, D. (2023). Comparative Analysis of CNN and CNN-SVM Methods For Classification Types of Human Skin Disease. Sinkron, 8(4), 2168–2178. https://doi.org/10.33395/sinkron.v8i4.12831

Arifuddin, N. A., Pinastawa, I. W. R., Anugraha, N., & Pradana, M. G. (2023). Classification of Stroke Opportunities with Neural Network and K-Nearest Neighbor Approaches. SinkrOn, 8(2), 688–693. https://doi.org/10.33395/sinkron.v8i2.12228

Arsi, P., Hidayati, L. N., & Nurhakim, A. (2022). Komparasi Model Klasifikasi Sentimen Issue Vaksin Covid-19 Berbasis Platform Instagram. 6, 459–466. https://doi.org/10.30865/mib.v6i1.3509

Diana Dewi, D., Qisthi, N., Lestari, S. S. S., & Putri, Z. H. S. (2023). Perbandingan Metode Neural Network Dan Support Vector Machine Dalam Klasifikasi Diagnosa Penyakit Diabetes. Cerdika: Jurnal Ilmiah Indonesia, 3(09), 828–839. https://doi.org/10.59141/cerdika.v3i09.662

Diansyah, S. (2022). Jurnal Sistim Informasi dan Teknologi Klasifikasi Tingkat Kepuasan Pengguna dengan Menggunakan Metode K-Nearest Neighbour ( KNN ). 4, 1–3. https://doi.org/10.37034/jsisfotek.v4i1.114

Fahmi Kamal, Widi Winarso, & Lia Mardiani. (2020). Peningkatan Kepuasan Mahasiswa Melalui Kualitas Pelayanan Akademik (Studi Kasus Pada Fakultas Keguruan Dan Ilmu Pendidikan Universitas Islam As-Syafi’Iyah Jakarta). Jurnal Ilmiah Akuntansi Dan Manajemen, 16(1), 33–45. https://doi.org/10.31599/jiam.v16i1.111

Fatma, N., & Harahap, S. Z. (2024). Analysis of Public Interest in Automatic Motorcycles Using KNN and Neural Network Methods. 8(2), 1178–1187.

Gatto, P. A., Maulana Awangga, R., & Andarsyah, R. (2023). Diagnosis Penyakit Demam Berdarah Menggunakan Naïve Bayes. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1676–1681. https://doi.org/10.36040/jati.v7i3.6891

Husein, A. M., Sipahutar, B., Dashuah, R., & Hutauruk, E. (2023). Sentiment Analysis Od Face To Face School Policy On Twitter Social Media With Support Vector Machine(SVM). Sinkron, 8(1), 480–486. https://doi.org/10.33395/sinkron.v8i1.11950

Manaransyah, G., Rahman, A., & Rachmawaty, I. K. (2023). Pengaruh Kualitas Pengajaran, Kualitas Pelayanan akademik dan Lingkungan Belajar Virtual pada Kepuasan Mahasiswa Pascasarjana dalam Perkuliahan Daring. Missio Ecclesiae, 12(2), 121–132. https://doi.org/10.52157/me.v12i2.205

Mawaddah, A., Dar, M. H., & Yanris, G. J. (2023). Analysis of the SVM Method to Determine the Level of Online Shopping Satisfaction in the Community. SinkrOn, 8(2), 838–855. https://doi.org/10.33395/sinkron.v8i2.12261

Mulyanto, A., Susanti, E., Rossi, F., Wajiran, W., & Borman, R. I. (2021). Penerapan Convolutional Neural Network (CNN) pada Pengenalan Aksara Lampung Berbasis Optical Character Recognition (OCR). Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 7(1), 52. https://doi.org/10.26418/jp.v7i1.44133

Naufal, M. F., Arifin, T., & Wirjawan, H. (2023). Analisis Perbandingan Tingkat Performa Algoritma SVM, Random Forest, dan Naïve Bayes untuk Klasifikasi Cyberbullying pada Media Sosial. Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK), 8, 82. Retrieved from https://tunasbangsa.ac.id/ejurnal/index.php/jurasik

Nugraha, A. B., & Romadhony, A. (2023). Identification of 10 Regional Indonesian Languages Using Machine Learning. Sinkron, 8(4), 2203–2214. https://doi.org/10.33395/sinkron.v8i4.12989

Pattnaik, G., & Parvathi, K. (2022). Machine learning-based approaches for tomato pest classification. Telkomnika (Telecommunication Computing Electronics and Control), 20(2), 321–328. https://doi.org/10.12928/TELKOMNIKA.v20i2.19740

Poerwandono, E., & Perwitosari, J. (2023). Penerapan Data Mining Untuk Penilaian Kinerja Karyawan Di PT. Riksa Dinar DJaya Menggunakan Metode Naïve Bayes Classification (Edhy Poerwandono 1 , Faizal Joko Perwitosari 2 ) Penerapan Data Mining Untuk Penilaian Kinerja Karya Di PT Riksa Dinar Djaya Men. Jurnal Sains Dan Teknologi, 5(1), |pp. Retrieved from https://doi.org/10.55338/saintek.v5i1.1416

Pratama, H. A., Yanris, G. J., Nirmala, M., & Hasibuan, S. (2023). Implementation of Data Mining for Data Classification of Visitor Satisfaction Levels. 8(3), 1832–1851.

Ramadhan, A., Susetyo, B., & Indahwati. (2019). Penerapan Metode Klasifikasi Random Forest Dalam Mengidentifikasi Faktor Penting Penilaian Mutu Pendidikan. Jurnal Pendidikan Dan Kebudayaan, 4(2), 169–182. https://doi.org/10.24832/jpnk.v4i2.1327

Ratih, I. D., Retnaningsih, S. M., & Dewi, V. M. (2022). Klasifikasi Kualitas Tanah Menggunakan Metode Naive Bayes Classifier. Jurnal Aplikasi Matematika Dan Statistik), 1(1), 11–20.

Septiarini, A., Rizqi Saputra, Andi Tejawati, & Masna Wati. (2021). Deteksi Sarung Samarinda Menggunakan Metode Naive Bayes Berbasis Pengolahan Citra. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(5), 927–935. https://doi.org/10.29207/resti.v5i5.3435

Sikumbang, E. D., Ariani, F., Handayani, T., & Ramanda, K. (2022). Penerapan Algoritma C4.5 Untuk Menentukan Tingkat Kepuasan Pelanggan Kartu Telkomsel Prabayar. Jurnal Sains Komputer & Informatika, 6(September), 811–820.

Sriwinarti, N. K., & Juniarti, P. (2021). Analisis Metode K-Nearest Neighbors ( K-NN ) Dan Naive Bayes Dalam Memprediksi Kelulusan Mahasiswa ( Analysis of K-Nearest Neighbors ( K-NN ) and Naive Bayes Methods in Predicting Student Graduation ). 3(2), 106–112.

Susetyoko, R., Wiratmoko Yuwono, & Elly Purwantini. (2022). Model Klasifikasi Pada Seleksi Mahasiswa Baru Penerima KIP Kuliah Menggunakan Regresi Logistik Biner. Jurnal Informatika Polinema, 8(4), 31–40. https://doi.org/10.33795/jip.v8i4.914

Wahyudi, A., Ovelia Tampubolon, S., afrilia Putri, N., Ghassa, A., Rasywir, E., & Kisbianty, D. (2022). Penerapan Data Mining Algoritma Naive Bayes Clasifier Untuk Mengetahui Minat Beli Pelanggan Terhadap INDIHOME. Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM), 2(2), 240–247. https://doi.org/10.33998/jakakom.2022.2.2.111




DOI: https://doi.org/10.36987/jcoins.v6i3.7917

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Hasil gambar untuk committee on publication ethics logo

Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE) dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). Journal of Computer Science and Information System(JCoInS) berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.


Journal of Computer Science and Information System(JCoInS)

Journal URL: https://jurnal.ulb.ac.id/index.php/JCoInS/index
Journal DOI: 10.36987/jcoins
E-ISSN: 2747-2221

Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418