Kepatuhan Pembayaran Pajak Kendaraan Bermotor Menggunakan Algoritma Decision Tree Dan Random Forest Di Samsat Balige

Alief Achmad Wijaya, Syaiful Zuhri Harahap, Rahma Muti Ah, Marnis Nasution

Abstract


This study aims to analyze and predict the total category of Motor Vehicle Tax (PKB) payments based on payment attributes and vehicle types, which is important to improve the effectiveness of tax management and support more appropriate decision making in related agencies; within the theoretical framework, classification models such as Decision Tree and Random Forest are used to predict data categories by utilizing historical patterns in the dataset, because these algorithms are able to capture interactions between attributes and provide logical interpretations of the prediction results; the research methodology is carried out using secondary data of PKB payments for 2024 from Samsat Balige, which is divided into training data and test data for the classification process and its performance is evaluated using accuracy, precision, recall, and F1-Score metrics through the Performance operator in RapidMiner; the results of the study show that Random Forest produces a more balanced prediction distribution with 100% accuracy, while Decision Tree has 96% accuracy but tends to be biased towards the “Low” category, and analysis of important attributes such as Fines, Total Amount, and the number of Jeep and Truck type vehicles shows a significant influence on the PKB payment category; Thus, the research conclusion confirms that Random Forest is proven to be more effective and stable than Decision Tree in predicting the total PKB payment category, is able to capture complex patterns between attributes, and provides accurate predictions on relatively small datasets, making it the optimal choice for PKB data classification.


Full Text:

PDF

References


Abdelmagid, A. S., & Qahmash, A. I. M. (2023). Utilizing the Educational Data Mining Techniques “Orange Technology” for Detecting Patterns and Predicting Academic Performance of University Students. Information Sciences Letters, 12(3), 1415–1431. https://doi.org/10.18576/isl/120330

Alam, A., Alana, D. A. F., & Juliane, C. (2023). Comparison Of The C.45 And Naive Bayes Algorithms To Predict Diabetes. Sinkron, 8(4), 2641–2650. https://doi.org/10.33395/sinkron.v8i4.12998

Almufqi, F. M., & Voutama, A. (2023). Perbandingan Metode Data Mining Untuk Memprediksi Prestasi Akademik Siswa. Jurnal Teknika, 15(1), 61–66. https://doi.org/10.30736/jt.v15i1.929

Andrianto, R., & Irawan, F. (2023). Implementasi Metode Regresi Linear Berganda Pada Sistem Prediksi Jumlah Tonase Kelapa Sawit di PT . Paluta Inti Sawit. Jurnal Pendidikan Tambusai, 7(1), 2926–2934.

Boateng, E. Y., Otoo, J., & Abaye, D. A. (2020). Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review. Journal of Data Analysis and Information Processing, 08(04), 341–357. https://doi.org/10.4236/jdaip.2020.84020

Elfaladonna, F., & Rahmadani, A. (2019). Analisa Metode Classification-Decission Tree Dan Algoritma C.45 Untuk Memprediksi Penyakit Diabetes Dengan Menggunakan Aplikasi Rapid Miner. SINTECH (Science and Information Technology) Journal, 2(1), 10–17. https://doi.org/10.31598/sintechjournal.v2i1.293

Forest, R., & Bayes, N. (2021). Perbandingan Akurasi , Recall , dan Presisi Klasifikasi pada Algoritma. 5(April), 640–651. https://doi.org/10.30865/mib.v5i2.2937

Hidayah, A. N. Z., & Rozi, A. F. (2021). Penerapan Data Mining Dalam Menentukan Kinerja Karyawan Terbaik Dengan Menggunakan Metode Algoritma C4.5 (Studi Kasus: Universitas Mercu Buana Yogyakarta). Jurnal Information System & Artificial Intelligence, 1(2), 117–127.

Hutagalung, J., Ginantra, N. L. W. S. R., Bhawika, G. W., Parwita, W. G. S., Wanto, A., & Panjaitan, P. D. (2021). COVID-19 Cases and Deaths in Southeast Asia Clustering using K-Means Algorithm. Journal of Physics: Conference Series, 1783(1). https://doi.org/10.1088/1742-6596/1783/1/012027

Informatika, T., Informatika, I., & Lampung, D. (2021). Perbandingan Data Set IRIS Dengan Aplikasi Rapid Miner dan Orange menggunakan Algoritma Klasifikasi. 158–163.

Mohammed, S., Elbeltagi, A., Bashir, B., Alsafadi, K., Alsilibe, F., Alsalman, A., … Harsányi, E. (2022). A comparative analysis of data mining techniques for agricultural and hydrological drought prediction in the eastern Mediterranean. Computers and Electronics in Agriculture, 197(March). https://doi.org/10.1016/j.compag.2022.106925

Putri, P. A. R., Prasetiyowati, S. S., & Sibaroni, Y. (2023). The Performance of the Equal-Width and Equal-Frequency Discretization Methods on Data Features in Classification Process. Sinkron, 8(4), 2082–2098. https://doi.org/10.33395/sinkron.v8i4.12730

Ratra, R., & Gulia, P. (2020). Experimental evaluation of open source data mining tools (WEKA and orange). International Journal of Engineering Trends and Technology, 68(8), 30–35. https://doi.org/10.14445/22315381/IJETT-V68I8P206S

Sulaiman, A. P., Liliana, L., & Santoso, L. W. (2021). Kecerdasan Buatan dengan Metode ID3 Finite State Machine dalam Turn-Based Tactics Game. Jurnal Infra, (031). Retrieved from http://publication.petra.ac.id/index.php/teknik-informatika/article/viewFile/11421/10031

Supriyadi, A., Triayudi, A., & Sholihati, I. D. (2021). Perbandingan Algoritma K-Means Dengan K-Medoids Pada Pengelompokan Armada Kendaraan Truk Berdasarkan Produktivitas. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 6(2), 229–240. https://doi.org/10.29100/jipi.v6i2.2008




DOI: https://doi.org/10.36987/jcoins.v6i3.7934

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Hasil gambar untuk committee on publication ethics logo

Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE) dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). Journal of Computer Science and Information System(JCoInS) berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.


Journal of Computer Science and Information System(JCoInS)

Journal URL: https://jurnal.ulb.ac.id/index.php/JCoInS/index
Journal DOI: 10.36987/jcoins
E-ISSN: 2747-2221

Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418