Analisis Kepuasan Masyarakat Terhadap Kinerja Bupati Labuhanbatu Selatan Periode 2021-2024 Menggunakan Metode Decision Tree dan Naive Bayes
Abstract
This study was conducted to analyze the level of customer satisfaction with services by comparing the performance of two classification methods, namely Decision Tree and Naive Bayes, so that an accurate model can be obtained to assist decision making. This problem is important because understanding customer satisfaction patterns can be a strategic basis in improving service quality and maintaining loyalty. The theoretical basis used refers to the concept of machine learning classification, where Decision Tree forms a branching rule-based model based on attributes, while Naive Bayes relies on probability calculations based on Bayes' theorem with the assumption of independence between features. The research methodology includes data collection stages, pre-processing to ensure data quality, model training with both methods, and performance evaluation using Test & Score and Confusion Matrix. Based on the classification results, the Decision Tree method produces fairly good accuracy, precision, and recall, but the Naive Bayes method shows higher performance with an accuracy of 91.67%, a precision of the "Satisfied" class of 98.11%, and a recall of 92.86%, which indicates a very good level of prediction accuracy especially for the majority class. Evaluation of both methods shows that Naive Bayes excels in capturing existing data patterns, although Decision Tree still has good interpretability for classification rule analysis. In conclusion, both methods are capable of classifying customer satisfaction data with adequate performance, but Naive Bayes is recommended as the primary model due to its higher and more consistent evaluation results, while Decision Tree can be used as an alternative when model interpretation is a priority.
Full Text:
PDFReferences
Alam, A., Alana, D. A. F., & Juliane, C. (2023). Comparison Of The C.45 And Naive Bayes Algorithms To Predict Diabetes. Sinkron, 8(4), 2641–2650. https://doi.org/10.33395/sinkron.v8i4.12998
Atalya Angelus Leza, M., Widya Utami, N., & Anugrah Cahya Dewi, P. (2024). Prediksi Prestasi Siswa Smas Katolik Santo Yoseph Denpasar Berdasarkan Kedisiplinan Dan Tingkat Ekonomi Orang Tua Menggunakan Metode Knowledge Discovery in Database Dan Algoritma Regresi Linier Berganda. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 373–379. https://doi.org/10.36040/jati.v8i1.8754
Aulia, R., Putri, I., Pudjiantoro, T. H., Informatika, T., Informatika, S., Jenderal, U., & Yani, A. (2020). Prediksi Perguruan Tinggi Negeri dengan Menggunakan Metode Naive Bayes. 106–111.
Barbosa, R. S., de Souza, Z. M., Carneiro, M. P., & Farhate, C. V. V. (2021). Root system and its relations with soil physical and chemical attributes in orange culture. Applied Sciences (Switzerland), 11(4), 1–14. https://doi.org/10.3390/app11041790
Farid Naufal, M., Fernando Susanto, A., Nathaneil Kansil, C., Huda, S., & kunci, K. (2023). Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Potensi Hilangnya Nasabah Bank Application of Machine Learning to Predict Potential Loss of Bank Customer. Februari, 22(1), 1–11.
Hafizan, H., & Putri, A. N. (2020). Penerapan Metode Klasifikasi Decision Tree Pada Status Gizi Balita Di Kabupaten Simalungun. KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), 1(2), 68–72. https://doi.org/10.30645/kesatria.v1i2.23
Madjid, F. M., Ratnawati, D. E., & Rahayudi, B. (2023). Sentiment Analysis on App Reviews Using Support Vector Machine and Naïve Bayes Classification. Jurnal Dan Penelitian Teknik Informatika, 8(1), 556–562. Retrieved from https://doi.org/10.33395/sinkron.v8i1.12161
Mirbod, O., Choi, D., Heinemann, P. H., Marini, R. P., & He, L. (2023). On-tree apple fruit size estimation using stereo vision with deep learning-based occlusion handling. Biosystems Engineering, 226, 27–42. https://doi.org/10.1016/j.biosystemseng.2022.12.008
Mohammed, S., Elbeltagi, A., Bashir, B., Alsafadi, K., Alsilibe, F., Alsalman, A., … Harsányi, E. (2022). A comparative analysis of data mining techniques for agricultural and hydrological drought prediction in the eastern Mediterranean. Computers and Electronics in Agriculture, 197(March). https://doi.org/10.1016/j.compag.2022.106925
Naufal, M. F., Arifin, T., & Wirjawan, H. (2023). Analisis Perbandingan Tingkat Performa Algoritma SVM, Random Forest, dan Naïve Bayes untuk Klasifikasi Cyberbullying pada Media Sosial. Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK), 8, 82. Retrieved from https://tunasbangsa.ac.id/ejurnal/index.php/jurasik
Ninditama, I. P., Ninditama, I. P., Cholil, W., Akbar, M., & Antoni, D. (2020). Klasifikasi Keluarga Sejahtera Study Kasus : Kecamatan Kota Palembang. 15(2), 37–49.
Nuraeni, S., Harliana, H., & Prabowo, T. (2024). Analisis Akurasi Naïve Bayes Dan Knn Dalam Penentuan Penerima Pkh Di Lombok Utara. Journal of Information System Management (JOISM), 5(2), 121–126. https://doi.org/10.24076/joism.2024v5i2.1205
Pratama, H. A., Yanris, G. J., Nirmala, M., & Hasibuan, S. (2023). Implementation of Data Mining for Data Classification of Visitor Satisfaction Levels. 8(3), 1832–1851.
Setiawan, A., Rabi, A., & Gumilang, Y. S. A. (2024). Pengolahan Citra untuk Sortir Buah Stroberi Berdasarkan Kematangan Menggunakan Algoritma K-Nearst Neighbors (KNN). Blend Sains Jurnal Teknik, 2(4), 322–328. https://doi.org/10.56211/blendsains.v2i4.551
Siahaan, T., Laia, Y., Silitonga, M., Pasaribu, C., Sains, F., & Teknologi, D. (2023). Penerapan Data Mining Classification Untuk Data Pasien Covid-19 Menggunakan Metode Naïve Bayes. AJurnal TEKINKOM, 6(1), 245–250. https://doi.org/10.37600/tekinkom.v6i1.879
Simanjuntak, A. Y., Simatupang, I. S. S., & Anita. (2022). Implementasi Data Mining Menggunakan Metode Naïve Bayes Classifier Untuk Data Kenaikan Pangkat Dinas. Journal of Science and Social Research, 4307(1), 85–91.
Sulaiman, A. P., Liliana, L., & Santoso, L. W. (2021). Kecerdasan Buatan dengan Metode ID3 Finite State Machine dalam Turn-Based Tactics Game. Jurnal Infra, (031). Retrieved from http://publication.petra.ac.id/index.php/teknik-informatika/article/viewFile/11421/10031
Zai, F., Sirait, J., Nainggolan, D. W., Sihombing, N. G. D., & Banjarnahor, J. (2023). Comparison Analysis of C4.5 Algorithm and KNN Algorithm for Predicting Data of Non-Active Students at Prima Indonesia University. Sinkron, 8(4), 2027–2035. https://doi.org/10.33395/sinkron.v8i4.12879
DOI: https://doi.org/10.36987/jcoins.v6i3.7971
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE) dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). Journal of Computer Science and Information System(JCoInS) berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.
Journal URL: https://jurnal.ulb.ac.id/index.php/JCoInS/index
Journal DOI: 10.36987/jcoins
E-ISSN: 2747-2221
Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418