Analisis Minat Konsumen Terhadap Produk Makanan Pada Mie Gacoan Menggunakan Algoritma Decision Tree (Studi Kasus Mie Gacoan Rantau Prapat)
Abstract
This study was conducted to analyze consumer interest in Mie Gacoan Rantau Prapat using a Decision Tree-based classification method. This analysis aims to determine the most influential factors in determining consumer interest in the food product. The theoretical basis used is the concept of data mining with classification techniques, where Decision Tree was chosen because of its ability to produce easy-to-understand models. In addition, theories regarding model evaluation such as accuracy, precision, and recall are also used to measure the performance of the built classification. This research methodology includes collecting data from 100 consumer entries which are then divided using the Split Data feature in RapidMiner with a ratio of 60:40, resulting in 40 training data and 60 testing data. The classification process is carried out using the Decision Tree algorithm, while evaluation is carried out with the performance operator to assess the model results. The classification results show that cleanliness is a major factor in determining consumer interest, where the number of consumers in the Interest category is more dominant than the No Interest category. The model evaluation yielded an accuracy of 73.33% with a precision of 73.47% in the Interested class and 72.73% in the Not Interested class, as well as a recall of 92.31% in the Interested class and 38.10% in the Not Interested class. In conclusion, the classification model developed is able to provide a picture of consumer interest patterns with a fairly good level of accuracy. These results can be a strategic reference for Mie Gacoan to improve service quality and cleanliness as the main factors determining consumer interest.
Full Text:
PDFReferences
Alam, A., Alana, D. A. F., & Juliane, C. (2023). Comparison Of The C.45 And Naive Bayes Algorithms To Predict Diabetes. Sinkron, 8(4), 2641–2650. https://doi.org/10.33395/sinkron.v8i4.12998
Anam, K., Nurhakim, B., & Juliane, C. (2022). Komparasi Algoritma Klasifikasi Data Mining Menggunakan Optimize Selection untuk Peminatan Program Studi. Building of Informatics, Technology and Science (BITS), 4(2), 606–613. https://doi.org/10.47065/bits.v4i2.2160
Andrianto, R., & Irawan, F. (2023). Implementasi Metode Regresi Linear Berganda Pada Sistem Prediksi Jumlah Tonase Kelapa Sawit di PT . Paluta Inti Sawit. Jurnal Pendidikan Tambusai, 7(1), 2926–2934.
Atalya Angelus Leza, M., Widya Utami, N., & Anugrah Cahya Dewi, P. (2024). Prediksi Prestasi Siswa Smas Katolik Santo Yoseph Denpasar Berdasarkan Kedisiplinan Dan Tingkat Ekonomi Orang Tua Menggunakan Metode Knowledge Discovery in Database Dan Algoritma Regresi Linier Berganda. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 373–379. https://doi.org/10.36040/jati.v8i1.8754
Barbosa, R. S., de Souza, Z. M., Carneiro, M. P., & Farhate, C. V. V. (2021). Root system and its relations with soil physical and chemical attributes in orange culture. Applied Sciences (Switzerland), 11(4), 1–14. https://doi.org/10.3390/app11041790
Farid Naufal, M., Fernando Susanto, A., Nathaneil Kansil, C., Huda, S., & kunci, K. (2023). Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Potensi Hilangnya Nasabah Bank Application of Machine Learning to Predict Potential Loss of Bank Customer. Februari, 22(1), 1–11.
Hafizan, H., & Putri, A. N. (2020). Penerapan Metode Klasifikasi Decision Tree Pada Status Gizi Balita Di Kabupaten Simalungun. KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), 1(2), 68–72. https://doi.org/10.30645/kesatria.v1i2.23
Hutagalung, J., & Sonata, F. (2021). Penerapan Metode K-Means Untuk Menganalisis Minat Nasabah. Jurnal Media Informatika Budidarma, 5(3), 1187. https://doi.org/10.30865/mib.v5i3.3113
Irmayani, D., Sinaga, F. A., & Masrizal, M. (2023). Analysis of the Level of Public Satisfaction on the Tiktok Application as an E-Commerce. Sinkron, 8(4), 2579–2591. https://doi.org/10.33395/sinkron.v8i4.13040
Mirbod, O., Choi, D., Heinemann, P. H., Marini, R. P., & He, L. (2023). On-tree apple fruit size estimation using stereo vision with deep learning-based occlusion handling. Biosystems Engineering, 226, 27–42. https://doi.org/10.1016/j.biosystemseng.2022.12.008
Nuraeni, S., Harliana, H., & Prabowo, T. (2024). Analisis Akurasi Naïve Bayes Dan Knn Dalam Penentuan Penerima Pkh Di Lombok Utara. Journal of Information System Management (JOISM), 5(2), 121–126. https://doi.org/10.24076/joism.2024v5i2.1205
Pascalina, D., Widhiastono, R., & Juliane, C. (2022). Pengukuran Kesiapan Transformasi Digital Smart City Menggunakan Aplikasi Rapid Miner. Technomedia Journal, 7(3), 293–302. https://doi.org/10.33050/tmj.v7i3.1914
Putri, P. A. R., Prasetiyowati, S. S., & Sibaroni, Y. (2023). The Performance of the Equal-Width and Equal-Frequency Discretization Methods on Data Features in Classification Process. Sinkron, 8(4), 2082–2098. https://doi.org/10.33395/sinkron.v8i4.12730
Riansyah, M., Suwilo, S., & Zarlis, M. (2023). Improved Accuracy In Data Mining Decision Tree Classification Using Adaptive Boosting (Adaboost). SinkrOn, 8(2), 617–622. https://doi.org/10.33395/sinkron.v8i2.12055
Sriwinarti, N. K., & Juniarti, P. (2021). Analisis Metode K-Nearest Neighbors ( K-NN ) Dan Naive Bayes Dalam Memprediksi Kelulusan Mahasiswa ( Analysis of K-Nearest Neighbors ( K-NN ) and Naive Bayes Methods in Predicting Student Graduation ). 3(2), 106–112.
Sulaiman, A. P., Liliana, L., & Santoso, L. W. (2021). Kecerdasan Buatan dengan Metode ID3 Finite State Machine dalam Turn-Based Tactics Game. Jurnal Infra, (031). Retrieved from http://publication.petra.ac.id/index.php/teknik-informatika/article/viewFile/11421/10031
Wahyudi, A., Ovelia Tampubolon, S., afrilia Putri, N., Ghassa, A., Rasywir, E., & Kisbianty, D. (2022). Penerapan Data Mining Algoritma Naive Bayes Clasifier Untuk Mengetahui Minat Beli Pelanggan Terhadap INDIHOME. Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM), 2(2), 240–247. https://doi.org/10.33998/jakakom.2022.2.2.111
Yudianto, M. R. A., Kusrini, K., & Al Fatta, H. (2020). Analisis Pengaruh Tingkat Akurasi Klasifikasi Citra Wayang dengan Algoritma Convolitional Neural Network. Jurnal Teknologi Informasi, 4(2), 182–191. https://doi.org/10.36294/jurti.v4i2.1319
Zai, F., Sirait, J., Nainggolan, D. W., Sihombing, N. G. D., & Banjarnahor, J. (2023). Comparison Analysis of C4.5 Algorithm and KNN Algorithm for Predicting Data of Non-Active Students at Prima Indonesia University. Sinkron, 8(4), 2027–2035. https://doi.org/10.33395/sinkron.v8i4.12879
DOI: https://doi.org/10.36987/jcoins.v6i3.7973
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE) dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). Journal of Computer Science and Information System(JCoInS) berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.
Journal URL: https://jurnal.ulb.ac.id/index.php/JCoInS/index
Journal DOI: 10.36987/jcoins
E-ISSN: 2747-2221
Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418