Konsep Tekhnologi Machine Learning Dalam Prediksi Kebutuhan Belajar Mahasiswa
Abstract
Kemajuan teknologi digital yang pesat telah membawa perubahan signifikan dalam dunia pendidikan, khususnya pada cara institusi pendidikan tinggi memahami dan memenuhi kebutuhan belajar mahasiswa. Salah satu pendekatan modern yang memiliki potensi besar dalam transformasi proses pembelajaran adalah penerapan teknologi machine learning. Machine learning merupakan bagian dari kecerdasan buatan (Artificial Intelligence) yang berfungsi untuk menganalisis data dalam jumlah besar, mengenali pola, serta memprediksi perilaku atau kebutuhan berdasarkan data tersebut tanpa harus diprogram secara eksplisit. Dalam konteks pendidikan, machine learning mampu menganalisis berbagai data akademik seperti nilai, kehadiran, interaksi pada platform pembelajaran daring, aktivitas tugas, serta hasil evaluasi mahasiswa.
Kata Kunci:
machine learning, kecerdasan buatan, prediksi, kebutuhan belajar, mahasiswa, pendidikan adaptif, analisis data akademik.
Full Text:
PDFReferences
E. Alpaydin, Introduction to Machine Learning. Cambridge, MA, USA: MIT Press, 2020.
R. S. Baker and P. S. Inventado, “Educational data mining and learning analytics,” in Learning Analytics: From Research to Practice, J. A. Larusson and B. White, Eds. Cham, Switzerland: Springer, 2014, pp. 61–75.
M. Brown and L. Czerniewicz, “Machine learning for education: Opportunities and challenges,” Journal of Learning Analytics, vol. 9, no. 2, pp. 45–63, 2022.
C. M. Chen and Y. L. Li, “Personalized learning path generation using machine learning in higher education,” Computers & Education, vol. 185, Art. no. 104518, 2022.
D. Gasevic, S. Dawson, and G. Siemens, “Let’s not forget: Learning analytics are about learning,” TechTrends, vol. 59, no. 1, pp. 64–71, 2015.
S. B. Kotsiantis, “Use of machine learning techniques for educational proposals: A review,” Artificial Intelligence Review, vol. 52, no. 1, pp. 193–208, 2019.
K. Li and S. L. Wong, “Predicting students’ learning needs using machine learning approaches,” International Journal of Educational Technology in Higher Education, vol. 18, Art. no. 45, 2021.
A. Moubayed, M. Injadat, A. Shami, and H. Lutfiyya, “Student engagement level in an e-learning environment: Clustering using k-means and decision trees,” IEEE Access, vol. 9, pp. 127221–127234, 2021.
C. Romero and S. Ventura, “Educational data mining: A review of the state of the art,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 50, no. 3, pp. 113–132, 2020.
S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to Algorithms. Cambridge, U.K.: Cambridge University Press, 2014.
G. Siemens and P. Long, “Penetrating the fog: Analytics in learning and education,” EDUCAUSE Review, vol. 46, no. 5, pp. 30–40, 2011.
O. Zawacki-Richter, V. I. Marín, M. Bond, and F. Gouverneur, “Systematic review of research on artificial intelligence applications in higher education,” International Journal of Educational Technology in Higher Education, vol. 16, Art. no. 39, 2019.
Refbacks
- There are currently no refbacks.



