Evaluasi Kinerja Algoritma Apriori Dalam Pengelompokan Data Transaksi Penjualan Untuk Analisis Pola Pembelian

Yomei Hendra, Putri Sakinah, Muhammad Thoriq

Abstract


The increasing volume and complexity of sales transaction data in the digital era have prompted companies and organizations to capitalize on the valuable information it holds. Understanding purchase patterns in sales transaction data is critical for discerning product associations and consumer behavior, thus optimizing marketing strategies and data-driven decision-making. This study concentrates on assessing the performance of the Apriori algorithm, a popular association analysis technique, in clustering sales transaction data to uncover purchase patterns. Using sales transaction data from retail stores, which includes customer identities and purchased products, the Apriori algorithm identifies frequent itemsets that represent common purchase patterns. The results of the purchase pattern analysis and product associations offer valuable insights for companies to fine-tune marketing strategies and enhance the overall customer experience. The research demonstrates that the Apriori algorithm effectively identifies frequent purchase patterns and product associations in sales transaction data. The algorithm's efficiency makes it suitable for analyzing retail sales data effectively. This research contributes to understanding the Apriori algorithm's performance in analyzing sales transaction data for purchase pattern analysis, empowering businesses to make informed decisions based on product associations and customer preferences.


Full Text:

PDF

References


W. Dari, “Analisis Metode Apriori Untuk Memprediksi Persediaan Barang Pada Warung,†J. Sai. dan Teknol., vol. 1, no. 4, pp. 438-447, 2022, doi: 10.55123/insologi.v1i4.807.

R. Husna, R. Lestari and Y. Hendra, “Inventory Model of Goods Availability with Apriori Algorithm,†J. Phys.: Conf. Ser., vol. 1317, no. 1, 2019, doi: 10.1088/1742-6596/1317/1/012019.

J. Dongga, A. Sarunggalo, N. Koru, and G. Lante, “Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menentukan Persediaan Barang,†J. Teknol. Terap., vol. 7, no. 1, pp. 119–126, 2023, doi: https://doi.org/10.33379/gtech.v7i1.1938.

A. H. Priyanyo and A. B. Arifa, “Implementation of Market Basket Analysis with Apriori Algorithm in Minimarket,†J. Tek.. Inf.., vol. 3, no. 5, pp. 1423-1429, 2022, doi: https://doi.org/10.20884/1.jutif.2022.3.5.606.

A. Susanto and Meiryani, “Functions, processes, stages and application of data mining,†Int. J. Sci. Technol. Res., vol. 8, no. 7, pp. 136–140, 2019.

A. Lewis, M. Zarlis, and Z. Situmorang, “Penerapan Data Mining Menggunakan Task Market Basket Analysis Pada Transaksi Penjualan Barang di Ab Mart dengan Algoritma Apriori,†J. Media Inform. Budidarma, vol. 5, no. 2, p. 676, 2021.

R. Husna, Y. Hendra and M.I. Akbar, “Comparison Between Apriori and Fp-Growth Algorithms on Inventory Model of Item Availability,†J. Ipte. Terap., vol. 14, no. 3, pp. 219–229, 2020, doi: https://doi.org/10.22216/jit.v14i3.100.

S. Sunarti, F. Handayanna, and E. Irfiani, “Analisa Pola Penjualan Makanan Dengan Penerapan Algoritma Apriori,†Techno.Com, vol. 20, no. 4, pp. 478–488, 2021.

E. Elisa, “Market Basket Analysis Pada Mini Market Ayu Dengan Algoritma Apriori,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 2, pp. 472–478, 2018.

J. Silva, N. Varela, L. A. B. López, and R. H. R. Millán, “Association rules extraction for customer segmentation in the SMES sector using the apriori algorithm,†Procedia Comput. Sci., vol. 151, no. 2018, pp. 1207–1212, 2019.




DOI: https://doi.org/10.36987/josdis.v3i2.4728

Refbacks

  • There are currently no refbacks.


Hasil gambar untuk committee on publication ethics logo
 

Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE) dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). Journal of Student Development Information System (JoSDIS) berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.

 

Journal of Student Development Information System (JoSDIS)
Journal URL: https://jurnal.ulb.ac.id/index.php/JoSDIS/index
Journal DOI: 10.36987/josdis
E-ISSN: 2774-7948

Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418