Pembuatan Aplikasi Data Mining Untuk Memperediksi Masa Studi Mahasiswa Menggunakan Algoritma Naive Bayes

Victor Tarigan

Abstract


Data mining is a series of processes to obtain additional value information that is not known manually from a database. Data mining also manages experience or even mistakes in the past to improve the quality of the analysis model, one of which is the learning ability of data mining techniques, namely classification. Class is a learning task that is a new object into one of the class labels or categories on the old object that has been previously defined. This classification uses one method of data mining algorithm that is Naive Bayes.Naive Bayes algorithm works based on a certain distance between two objects by setting the value of k. The value of k is a parameter to determine the distance between the new object to the old object.By using the data mining technique, the university can obtain student academic data, namely the Achievement Index (IP) to predict the student's study period.In this data mining application consists of data testing and data training with NIM input.PHP and the database used is MySQL.The results of this data mining application this system can predict the results of the classification of student study period based on GPA 4 first semester, the average value of high school time, and grades in high school.


Keywords


Data Mining, Classification, Naive Bayes Algorithm, Student.

Full Text:

PDF

References


Alkhairi, P., & Windarto, A. P. (2019). Penerapan K-Means Cluster pada Daerah Potensi Pertanian Karet Produktif di Sumatera Utara.Seminar Nasional Teknologi Komputer & Sains, 762–767

Rosmini, R., Fadlil, A., & Sunardi, S. (2018). Implementasi Metode K-Means Dalam Pemetaan Kelompok Mahasiswa Melalui Data Aktivitas Kuliah. It Journal Research and Development, 3(1), 22–31. https://doi.org/10.25299/itjrd.2018.vol3(1).1773.

A. W. Indra Purnama, Ragil Saputra, “Implementasi Data Mining Menggunakan Crisp-Dm Pada Sistem Informasi Eksekutif Dinas Kelautan Dan Perikanan Provinsi Jawa Tengah,†Annual Review of Information Science and Technology, vol. 36, 2017.




DOI: https://doi.org/10.36987/informatika.v11i1.3847

Hasil gambar untuk committee on publication ethics logo

Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE)dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). INFORMATIKA berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.

 

INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855

Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418