TOOLS
Analisis Sentimen Ulasan Pengguna Aplikasi pada Google Play Store Menggunakan Algoritma Support Vector Machine
Abstract
One of the most popular e-commerce sites in Indonesia is Shopee. As the largest marketplace application in Indonesia, Shopee provides product and service review features to users on the Google Play Store. The review feature is very helpful to find out whether user reviews are positive or negative. Having user reviews will help Shopee improve its services. To identify a very large number of user reviews, it is not possible to do it manually by reading them one by one. This process will take a very long time and is not effective. Therefore, we need a method that is able to identify reviews from users more effectively and efficiently. This research aims to conduct sentiment analysis of user reviews of the Shopee application on the Google Play Store by applying the Support Vector Machine algorithm. The research stages carried out started with dataset collection, dataset labeling, preprocessing, TF-IDF weighting, classification, and evaluation. From the research results, accuracy was 70.88%, precision was 49.49%, recall was 52.55%, and F1-score was 49.84%. From these results, it can be concluded that the performance of the support vector machine algorithm in classifying the sentiment of user reviews of the Shopee application on the Google Play Store is quite good.
Full Text:
PDFDOI: https://doi.org/10.36987/informatika.v11i2.5860
Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE)dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). INFORMATIKA berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.
INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855
Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418