Analisis Data Penjualan Menggunakan Algoritma Apriori pada Analisis Kopi
Abstract
Data Mining is a technique for finding, searching, or extracting new information or knowledge from a very large set of data, by integration or merging with other disciplines such as statistics, artificial intelligence, and machine learning, making Data Mining as one of the tools to analyze data and then produce useful information. Association Rule is a process in Data Mining to determine all associative rules that meet the minimum requirements for support (minsup) and confidence (minconf) in a database. In Association Rule, there are 2 methods that can be used, namely a priori method and FP-Growth method, where FP-Growth method is the development of a priori method where a priori method there are still some shortcomings such as there are many patterns of data combinations that often appear (many frequent patterns), many types of items but low minimum support fulfillment, it takes quite a long time because database scanning is done repeatedly to get the ideal frequent pattern. In this study the method used is a priori algorithm method, a priori algorithm method is one of the alternative ways to find the most frequently appearing data sets (frequent itemset) without using candidate generation that is suitable for analyzing a transaction data. Coffee analysis is a Cafe Shop engaged in the sale of food and beverages that many food and beverage sales transactions. Open on November 7, 2021 coffee analysis penetrates 245 sales transactions and this transaction data continues to grow every day.
Keywords
Full Text:
PDFReferences
A. Prasetyo, R. Sastra, and N. Musyaffa, “Implementasi Data Mining Untuk Analisis Data Penjualan Dengan Menggunakan Algoritma Apriori (Studi Kasus Dapoerin’S),” Jurnal Khatulistiwa Informatika, vol. 8, no. 2, 2020, doi: 10.31294/jki.v8i2.8994.
Anggada Maulana, “Konsep Dasar Data Mining,” Konsep Data Mining, vol. 1, pp. 1–16, 2018.
F. J. Martínez‐López and J. Casillas, “ KDD /Data Mining ,” Wiley Encyclopedia of Management, pp. 1–1, 2015, doi: 10.1002/9781118785317.weom090075.
F. Rahmawati and N. Merlina, “Metode Data Mining Terhadap Data Penjualan Sparepart Mesin Fotocopy Menggunakan Algoritma Apriori,” PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic, vol. 6, no. 1, pp. 9–20, 2018, doi: 10.33558/piksel.v6i1.1390.
G. Gunadi and D. I. Sensuse, “Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunakan Algoritma Apriori Dan Frequent Pattern Growth ( Fp-Growth ) :,” Telematika, vol. 4, no. 1, pp. 118–132, 2012.
H. Santoso, I. P. Hariyadi, and Prayitno, “Data Mining Analisa Pola Pembelian Produk,” Teknik Informatika, no. 1, pp. 19–24, 2016, [Online]. Available: http://ojs.amikom.ac.id/index.php/semnasteknomedia/article/download/1267/1200
Nurdin and D. Astika, “Penerapan Data Mining Untuk Menganalisis Penjualan Barang Dengan Pada Supermarket Sejahtera Lhokseumawe,” vol. 6, no. 1, pp. 134–155, 2015, doi: 10.29103/TECHSI.V7I1.184.
R. P. MANIK, “Analisis Data Penjualan Ghuroba Coffee Menggunakan Pendekatan Data Mining,” 2022, [Online]. Available: https://repository.mercubuana.ac.id/72601/%0Ahttps://repository.mercubuana.ac.id/72601/1/41518210025 - Rayvaldo Prawira Manik - 02 Cover.pdf
S. Al Syahdan and A. Sindar, “Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kota,” Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI), vol. 1, no. 2, 2018, doi: 10.32672/jnkti.v1i2.771.
Siti Nurajizah, “Analisa Transaksi Penjualan Obat Menggunakan Algoritma Apriori,” INOVTEK Polbeng - Seri Informatika, vol. 4, no. 1, pp. 35–44, 2019.
DOI: https://doi.org/10.36987/informatika.v12i3.6064
INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855
Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418