Implementasi Data Mining Untuk Klustering Stunting Gizi Pada Balita Dipuskesmas Sigambal Meggunakan Metode K-Medoids Dan K-Means

Melisa Melisa, Syaiful Zuhri Harahap, Masrizal Masrizal

Abstract


The aim of this study was to identify and understand the different characteristics of toddlers in the context of factors that contribute to nutritional stunting. By using the clustering method, this study aims to group toddlers into several groups based on the similarity of their characteristics, so that more targeted interventions can be designed in dealing with stunting problems. Through this approach, it is hoped that significant patterns and risk factors can be found that distinguish stunted toddlers from toddlers who grow normally, and provide insights that can be used by policy makers and health practitioners to improve the quality of life of children. The method used in this study involves the application of two clustering techniques, namely K-Means and K-Medoids to Group sample data of 116 toddlers. The clustering process is carried out by measuring the distance between the toddler data and the centroid or medoid to determine which group is most suitable. The Data were analyzed to find patterns identifying unique characteristics of each cluster, reflecting differences in nutritional stunting-related risk factors.This process helps in differentiating groups of toddlers who are prone to stunting from those who are not, so that the analysis can be focused on the groups most in need of intervention. The results of clustering analysis showed that as many as 48 toddlers entered the C1 cluster, while the other 68 toddlers entered the C2 cluster. Each cluster describes two groups of toddlers with different characteristics in the context of nutritional stunting risk factors. The findings provide deep insight into the significant differences between the two groups, allowing researchers to identify specific patterns and risk factors. This information is then used to design more specific and effective interventions in addressing nutritional stunting in toddlers, taking into account the unique characteristics of each cluster that has been identified.

Keywords


Metode K-Means, Metode K-Medoids, Clustering.

Full Text:

PDF

References


A. Kurnia, “Perbandingan Algoritma K-Means dan Fuzzy C-Means Untuk Clustering Puskesmas Berdasarkan Gizi Balita Surabaya,” J. Process., vol. 18, no. 1, pp. 83–88, 2023, doi: 10.33998/processor.2023.18.1.696.

S. A. Sakti, “Pengaruh Stunting pada Tumbuh Kembang Anak Periode Golden Age,” J. Ilm.Fak.Kegur.danIlmuPendidik.,vol.6,no.1,pp.169–175,2020,[Online]. Available:http://ejournal.unsub.ac.id/index.php/FKIP

H. A. Karim, F. Fitritanti, and Y. Yakub, “Peningkatan Produktifitas Tanaman Sawi Melalui Penambahan Pupuk Kandang Ayam dan NPK 16:16:16,” JAMI J. Ahli Muda Indones., vol. 1, no. 1, pp. 65–72, 2020, doi: 10.46510/jami.v1i1.19.

K. Kondisi Gizi Balita Dan Anak Khairul Zannah, Z. Masruro Nasution, I. Parlina, I. PurnamaSari,J.TeknikInformatika,andS.TunasBangsa,“ModelClusteringAlgoritma K-Mean Dalam Menentukan,” J. Din. Inform., vol. 11, no. 1, pp. 34–44, 2022.

I.C.Indah,M.N.Sari,andM.H.Dar,“ApplicationoftheK-MeansClusteringAgorithm to Group Train Passengers in Labuhanbatu,” SinkrOn, vol. 8, no. 2, pp. 825–837, 2023, doi: 10.33395/sinkron.v8i2.12260.

R. N. Juliadi and Y. Puspitarani, “Supervised Model for Sentiment Analysis Based on Hotel Review Clusters using RapidMiner,” SinkrOn, vol. 7, no. 3, pp. 1059–1066, 2022, doi: 10.33395/sinkron.v7i3.11564.

F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, and C. Silva, “Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors,” J. Mater. Chem. C, vol. 3, pp. 10715–10722, 2015, doi: 10.1039/b000000x.

A. Ali, “Clustering Data Antropometri Balita Untuk Menentukan Status Gizi Balita Di Kelurahan Jumput Rejo Sukodono Sidoarjo,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 3, pp. 395–407, 2020, doi: 10.35957/jatisi.v7i3.530.

M. Shutaywi and N. N. Kachouie, “Silhouette analysis for performance evaluation in machinelearningwithapplicationstoclustering,”Entropy,vol.23,no.6,pp.1–17,2021, doi: 10.3390/e23060759.

Y. S. Su and S. Y. Wu, “Applying data mining techniques to explore user behaviors and watching video patterns in converged IT environments,” J. Ambient Intell. Humaniz. Comput., no. 0123456789, 2021, doi: 10.1007/s12652-020-02712-6.

R. W. Sembiring Brahmana, F. A. Mohammed, and K. Chairuang, “Customer Segmentation Based on RFM Model Using K-Means, K-Medoids, and DBSCAN Methods,” Lontar Komput.J. Ilm. Teknol. Inf., vol. 11, no. 1, p. 32, 2020, doi: 10.24843/lkjiti.2020.v11.i01.p04.

P. Cv and W. Menggunakan, “Implementasi Algoritma K-Means Dalam Pengelompokan Data,” vol. 2, no. 1, pp. 188–196, 2023.

E.Muningsih,“Kombinasi Metodek-Means Dan Decision Tree Dengan Perbandingan Kriteria Dan Split Data,”vol. 16, no. 1, pp. 113–118, 2022.

W. Sudrajat, I. Cholid, and J. Petrus, “Wahyu Sudrajat et al, Penerapan Algoritma K- Means Untuk ,” p. 27, 2022.




DOI: https://doi.org/10.36987/informatika.v12i3.6159

Hasil gambar untuk committee on publication ethics logo

Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE)dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). INFORMATIKA berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.

 

INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855

Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418