Simulasi Kinerja Karyawan di Kantor Pertanahan Labuhanbatu Menggunakan Algoritma C4.5

Khodijah Nasution, Masrizal Masrizal, Syaiful Zuhri Harahap

Abstract


Employee performance analysis using the C4.5 algorithm in data mining aims to identify and classify employees based on their performance. The analysis process includes several stages, namely data analysis, preprocessing, model design in data mining, and method evaluation. From 47 sample data analyzed, the results show that 40 employees have good characters, while 7 employees have bad characters. Good employee characters are characterized by punctuality and high discipline in carrying out their duties. Conversely, bad employee characters are characterized by unpunctuality and low discipline, which have a negative impact on productivity and efficiency in the workplace. The results of this classification help identify areas that require more attention and intervention to improve overall employee performance. Model evaluation is carried out using two widgets, namely Test and Score and Confusion Matrix. The evaluation results of these two widgets show perfect accuracy of 100%. Meanwhile, the Confusion Matrix widget shows that all predictions are in accordance with the actual data without any errors in classification. These results confirm that the C4.5 algorithm is very effective and accurate in classifying employee performance. The perfection of the evaluation results shows that the C4.5 algorithm is very suitable for use as a classification model in employee performance analysis. The 100% accuracy of both widgets indicates that this algorithm is not only able to predict correctly but also consistently in various evaluation tools.


Keywords


Data Mining; C4.5 Algorithm, Employee Performance, Confusion Matrix, Tree Viewer.

Full Text:

PDF

References


A. D. S. Saputra, D. Hindarto, and H. Haryono, “Supervised Learning from Data Mining on Process Data Loggers on Micro-Controllers,” Sinkron, vol. 8, no. 1, pp. 157–165, 2023, doi: 10.33395/sinkron.v8i1.11942.

A. Karim, S. Esabella, M. Hidayatullah, and S. Suryadi, “Penerapan Data Mining Untuk Pengelompokan Terhadap Kualitas Kinerja Karyawan Dengan Menggunakan Algoritma K-Medoids Clustering,” vol. 8, no. April, pp. 1001–1009, 2024, doi: 10.30865/mib.v8i2.7445.

A. N. Z. Hidayah and A. F. Rozi, “Penerapan Data Mining Dalam Menentukan Kinerja Karyawan Terbaik Dengan Menggunakan Metode Algoritma C4.5 (Studi Kasus: Universitas Mercu Buana Yogyakarta),” J. Inf. Syst. Artif. Intell., vol. 1, no. 2, pp. 117– 127, 2021.

A. Yudhistira, A. A. Aldino, and D. Darwis, “Analisis Klasterisasi Penilaian Kinerja Pegawai Menggunakan Metode Fuzzy C-Means (Studi Kasus : Pengadilan Tinggi Agama bandar lampung),” J. Ilm. Edutic Pendidik. dan Inform., vol. 9, no. 1, pp. 77–82, 2022, doi: 10.21107/edutic.v9i1.17134.

B. Sinaga, M. Marpaung, I. R. B. Tarigan, and K. Tania, “Implementation of Stock Goods Data Mining Using the Apriori Algorithm,” Sinkron, vol. 8, no. 3, pp. 1280–1292, 2023, doi: 10.33395/sinkron.v8i3.12852.

E. Poerwandono and J. Perwitosari, “Penerapan Data Mining Untuk Penilaian Kinerja Karyawan Di PT. Riksa Dinar DJaya Menggunakan Metode Naïve Bayes Classification (Edhy Poerwandono 1 , Faizal Joko Perwitosari 2 ) Penerapan Data Mining Untuk Penilaian Kinerja Karya Di PT Riksa Dinar Djaya Men,” J. Sains dan Teknol., vol. 5, no. 1, p. |pp, 2023, [Online]. Available: https://doi.org/10.55338/saintek.v5i1.1416

G. W. Aji and P. A. R. Devi, “Data Mining Implementation For Product Transaction Patterns Using Apriori Method,” Sinkron, vol. 8, no. 1, pp. 421–432, 2023, doi: 10.33395/sinkron.v8i1.12071.

H. A. Pratama, G. J. Yanris, M. Nirmala, and S. Hasibuan, “Implementation of Data Mining for Data Classification of Visitor Satisfaction Levels,” vol. 8, no. 3, pp. 1832– 1851, 2023.

J. Faran and A. Triayudi, “Penerapan Algoritma K-Means Data Mining untuk Clustering Kinerja Karyawan Koperasi,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 4, pp. 2096–2108, 2024, doi: 10.30865/klik.v4i4.1728.

M. I. Abas, I. Ibrahim, S. Syahrial, R. Lamusu, U. S. Baderan, and R. Kango, “Analysis of Covid-19 Growth Trends Through Data Mining Approach As Decision Support,” Sinkron, vol. 8, no. 1, pp. 101–108, 2023, doi: 10.33395/sinkron.v8i1.11861.

M. Riansyah, S. Suwilo, and M. Zarlis, “Improved Accuracy In Data Mining Decision Tree Classification Using Adaptive Boosting (Adaboost),” SinkrOn, vol. 8, no. 2, pp. 617–622, 2023, doi: 10.33395/sinkron.v8i2.12055.

S. A. Hasibuan, V. Sihombing, and F. A. Nasution, “Analysis of Community Satisfaction Levels using the Neural Network Method in Data Mining,” Sinkron, vol. 8, no. 3, pp. 1724–1735, 2023, doi: 10.33395/sinkron.v8i3.12634.

S. Maizura, V. Sihombing, and M. H. Dar, “Analysis of the Decision Tree Method for Determining Interest in Prospective Student College,” SinkrOn, vol. 8, no. 2, pp. 956– 979, 2023, doi: 10.33395/sinkron.v8i2.12258.

S. Sahibu, R. Bambang, I. Taufik, and Agusriandi, “Penerapan Data Mining Dalam Analisis Penilaian Kinerja Pegawai Menerapkan Metode K-Means,” J. Media Inform. Budidarma, vol. 7, no. 1, pp. 22–29, 2023, doi: 10.30865/mib.v7i1.5100.

Y. Bustomi, A. Nugraha, C. Juliane, and S. Rahayu, “Data Mining Selection of Prospective Government Employees with Employment Agreements using Naive Bayes Classifier,” Sinkron, vol. 8, no. 1, pp. 1–8, 2023, doi: 10.33395/sinkron.v8i1.11968.




DOI: https://doi.org/10.36987/informatika.v12i3.6160

Hasil gambar untuk committee on publication ethics logo

Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE)dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). INFORMATIKA berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.

 

INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855

Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418