Implementasi Metode Naive Bayes dan Neural Network Untuk Menentukan Minat Masyarakat Pada Handphone Samsung

Nelvi Nurrizqi M, Syaiful Zuhri Harahap, Irmayanti Irmayanti

Abstract


Naive Bayes and Neural Network methods are used in analyzing people's interest in Samsung mobile phones to gain a better understanding of consumer preferences. Naive Bayes is a simple but very effective probability-based classification method. This method generates possible consumer interests by analyzing features such as price, specifications, and brands, and calculating the probability of different categories. Naive Bayes is very useful in situations where data has independent features, and can provide accurate results at high speed. By identifying patterns of people's preferences, this method can help Samsung adjust marketing and product strategies that are more in line with consumer needs. On the other hand, Neural Network offers more complex analytical capabilities by imitating the way the human brain works through a network of neurons. This method is used to process larger and more complex data in understanding consumer interest patterns in Samsung mobile phones. Neural Network can identify deeper relationships between various factors, such as the interaction between camera features and user needs, using deep learning processes. The purpose of using Neural Network is to capture nuances and trends that cannot be identified with simple methods, thereby providing a more comprehensive view of what drives consumer interest. The use of these two methods of analysis in public interest in Samsung mobile phones has provided very satisfactory results. The calculation values obtained from both methods show a high level of accuracy in the classification of consumer interest. The results of this analysis provide valuable insights for Samsung in understanding consumer preferences and needs, as well as helping the company in designing more effective products and marketing strategies. Thus, the combination of the use of Naive Bayes and Neural Networks not only provides stron g results, but also provides a more holistic approach to consumer data analysis.


Keywords


Classification, Naive Bayes Method. Neural Network Method.

Full Text:

PDF

References


D. Bhatt et al., “Cnn variants for computer vision: History, architecture, application, challenges and future scope,” Electron., vol. 10, no. 20, pp. 1–28, 2021, doi: 10.3390/electronics10202470.

D. Safitri, S. S. Hilabi, and F. Nurapriani, “Analisis Penggunaan Algoritma Klasifikasi Dalam Prediksi Kelulusan Menggunakan Orange Data Mining,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 8, no. 1, pp. 75–81, 2023, doi: 10.36341/rabit.v8i1.3009.

F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, and C. Silva, “Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors,” J. Mater. Chem. C, vol. 3, pp. 10715–10722, 2015, doi: 10.1039/b000000x.

H. A. Pratama, G. J. Yanris, M. Nirmala, and S. Hasibuan, “Implementation of Data Mining for Data Classification of Visitor Satisfaction Levels,” vol. 8, no. 3, pp. 1832– 1851, 2023.

I. Fawwaz, J. D. Sagala, R. K. F. Sijabat, and N. M. Maringga, “Implementation of Transfer Learning in CNN for Classification of Nut Type,” Sinkron, vol. 8, no. 4, pp. 2308–2315, 2023, doi: 10.33395/sinkron.v8i4.12784.

I. P. Ninditama, I. P. Ninditama, W. Cholil, M. Akbar, and D. Antoni, “Klasifikasi Keluarga Sejahtera Study Kasus : Kecamatan Kota Palembang,” vol. 15, no. 2, pp. 37– 49, 2020.

K. A. Mahasiswa, R. Rachmatika, and A. Bisri, “Perbandingan Model Klasifikasi untuk Evaluasi,” vol. 6, no. 3, pp. 417–422, 2020.

K. Ma, “Analisis Penerapan Algoritma ID3 dalam Mendiagnosis Kesuburan Pria,” 2019.

M. A. Afifi, T. M. Ghazal, M. A. M. Afifi, and D. Kalra, “Data Mining and Exploration: A Comparison Study among Data Mining Techniques on Iris Data Set,” Talent Dev. Excell., vol. 12, no. 1, pp. 3854–3861, 2020, [Online]. Available: http://www.iratde.com.

M. Sholihin and M. R. Zamroni, “Identifikasi Kesegaran Ikan Berdasarkan Citra Insang Dengan Metode Convolution Neural Network,” vol. 8, no. 3, pp. 1352–1360, 2021.

O. Mirbod, D. Choi, P. H. Heinemann, R. P. Marini, and L. He, “On-tree apple fruit size estimation using stereo vision with deep learning-based occlusion handling,” Biosyst. Eng., vol. 226, pp. 27–42, 2023, doi: 10.1016/j.biosystemseng.2022.12.008.

R. N. Juliadi and Y. Puspitarani, “Supervised Model for Sentiment Analysis Based on Hotel Review Clusters using RapidMiner,” SinkrOn, vol. 7, no. 3, pp. 1059–1066, 2022, doi: 10.33395/sinkron.v7i3.11564.

R. Ratra and P. Gulia, “Experimental evaluation of open source data mining tools (WEKA and orange),” Int. J. Eng. Trends Technol., vol. 68, no. 8, pp. 30–35, 2020, doi: 10.14445/22315381/IJETT-V68I8P206S.

S. Diansyah, “Jurnal Sistim Informasi dan Teknologi Klasifikasi Tingkat Kepuasan Pengguna dengan Menggunakan Metode K-Nearest Neighbour ( KNN ),” vol. 4, pp. 1– 3, 2022, doi: 10.37034/jsisfotek.v4i1.114.

S. Sharma and P. Chaudhary, “Machine learning and deep learning,” Quantum Comput. Artif. Intell. Train. Mach. Deep Learn. Algorithms Quantum Comput., pp. 71–84, 2023, doi: 10.1515/9783110791402-004.

W. Sudrajat, I. Cholid, and J. Petrus, “Wahyu Sudrajat et al, Penerapan Algoritma K- Means Untuk ,” p. 27, 2022.




DOI: https://doi.org/10.36987/informatika.v12i3.6163

Hasil gambar untuk committee on publication ethics logo

Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE)dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). INFORMATIKA berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.

 

INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855

Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418