PENERAPAN METODE CLUSTERING K-MEANS UNTUK PENGELOMPOKAN KELULUSAN MAHASISWA BERBASIS KOMPETENSI

Sudi Suryadi

Abstract


The difficulty often comes every year, in choosing graduation as a student by an employee
perengkrutan partners with AMIK Labuhanbatu. Competence of each student graduation taking
influence the employee in question, so as not to disappoint both sides. In this study, the authors try to
classify the data using a competency-based graduation one simple data mining techniques, namely
clustering technique (clustering) two-dimensional, which means the two variables that will be used in
grouping the graduation GPA and the value of student competencies that. Algorithms used in the
grouping (clustering) using the K-Means algorithm that starts with a random selection of K, which is
the number of clusters to be formed from the data to be in the cluster. This testing is done manually
in addition also performed with the RapidMiner data mining application of 46 records. From the
results of a study of 46 records were done manually or using RapidMiner data mining applications
have 3 groups of competency-based graduation with similar results between the two tests, namely
Cluster 1 consists of passing information to the student with IPK of 30.0 to 31.7 and 62.50 to
Competency with 71,50 the number of members of cluster 13. Cluster 2 consists of graduation students
with IPK of 30.0 to 33.5 and 81.00 to 89.00 competencies that number 18 cluster members. Cluster 3
consists of graduate students with IPK of 30.0 to 33.8 and 72.50 to 79.00 competencies that number
15 cluster members.

Full Text:

PDF

References


Baskoro (2010). Implementasi Algoritma KMeans Menggunakan Data Penyewaan Alat

Berat Untuk Melakukan Estimasi Nilai

Outcome, Fakultas Ilmu Komputer,

Universitas Pembangunan Nasional

â€Veteranâ€, Jakarta.

Besdek (1981). Euclidean. dlm. Eko Prasetyo.

Data Mining : Konsep dan Aplikasi

Menggunakan Matlab, Yogyakarta: ANDI.

Budi Santoso (2007), Data Mining Teknik

Pemanfaatan Data untuk Keperluan Bisnis.

Yogyakarta : Graha Ilmu.

Cary Liniker Simbolon, Nilamsari Kusumastuti

dan Beni Irawan (2013), Buletin Ilmiah Mat.

Stat. Dan Terapannya (Bimaster). Clustering

Lulusan Mahasiswa Matematika FMIPA

UNTAN Pontianak Menggunakan Algoritma

Fuzzy C-Means. 2 . 21-26

Carlos Ordonez (2004). Industry/Government

Track Poster. Programming The K-Means

Clustering Algorithm in SQL. 1-6

Davies, and Paul Beynon (2004). Database

Systems Third Edition. Palgrave Macmillan.

Eko Prasetyo (2012). Data Mining : Konsep dan

Aplikasi Menggunakan Matlab, Edisi 1,

Yogyakarta : Andi.178-201.

Elmasri, Ramez and Shamkant B. Navathe,

(2000), “Fundamentals of Database

Systems. Third Editionâ€, Addison Wesley

Publishing Company, New York.

Han, Jiawei, Kamber dan Micheline (2006),

Data Mining Concepts and Techniques

Second Edition.

Iko Pramudiono (2003). Pengantar Data Mining

: Menambang Permata Pengetahuan di

Gunung Data. Kuliah Umum

IlmuKomputer.Com. 1-4

Mahendiran et.al, (2012), Implementation of KMeans Clustering in Cloud Computing

Environment.

Michael W. Trosset (2008). Department of

Statistics. Representing Clusters : K-Means

Clustering, Self-Organizing Maps, and

Multidimensional Scaling. 8. 1-18

Narwati (2006), Pengelompokan Mahasiswa

Menggunakan Algoritma K-Means. 1-7

Tan, P; Steinbach; & Kumar, (2006), V,

Introduction to Data Mining. Pearson

Education.

Tapas Kanungo et. all (2002). Ieee Transactions

On Pattern Analysis And Machine

Intelligence. An Efficientk-Means Clustering

Algorithm: Analysis and Implementation. 24.

-12

U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and

R. Uthurusamy, (1996), Advances in

Knowledge Discovery and Data Mining,

AAAI/MIT Press.

Tedy Rismawan dan Sri Kusumadewi (2008).

Seminar Nasional Aplikasi Teknologi

Informasi 2008 (SNATI 2008). Aplikasi KMeans Untuk Pengelompokan Mahasiswa

Berdasarkan Body Mass Index (BMI) dan

Ukuran Kerangka. E43-E47

Vance Faber (1994). Los Alamos Science.

Clustering and The Continuous K-Means

Algorithm. 22. 1-7

Witten, Ian H. and Frank, Eibe, (2005), Data

Mining Practical Machine Learning Tools

and Techniques, Second Edition.

Widyawati, (2010), Perbandingan Clustering

Based On Frequent Word Sequence (CFWS)

Dan K-Means Untuk Pengelompokan

Dokumen Berbahasa Indonesia. Fakultas

Pendidikan Matematika Dan Ilmu

Pengetahuan Alam, Universitas Pendidikan

Indonesia, Bandung,

Yiu-Ming Cheung (2003). Pattern Recognition

Letters. K-Means: A New Generalized KMeans Clustering Algorithm. 24. 1-11

Yudi Agusta (2007), Sistem dan Informatika. KMeans Penerapan, Permasalahan dan

Metode Terkait. 3. 47-60.




DOI: https://doi.org/10.36987/informatika.v6i1.738

Hasil gambar untuk committee on publication ethics logo

Jurnal ini mengikuti pedoman dari Committee on Publication Ethics (COPE)dalam menghadapi semua aspek etika publikasi dan, khususnya, bagaimana menangani kasus penelitian dan kesalahan publikasi. Pernyataan ini menjelaskan etika perilaku semua pihak yang terlibat dalam proses penerbitan artikel di jurnal ini, termasuk Penulis, Pemimpin Redaksi, Dewan Redaksi, Mitra Bebestari, dan Penerbit (Akademi Kepolisian Republik Indonesia). INFORMATIKA berkomitmen untuk mengikuti praktik terbaik tentang masalah etika, kesalahan, dan pencabutan. Pencegahan malpraktek publikasi merupakan salah satu tanggung jawab penting dewan redaksi. Segala jenis perilaku tidak etis tidak dapat diterima, dan jurnal tidak mentolerir plagiarisme dalam bentuk apa pun.

 

INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855

Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418