PENERAPAN METODE CLUSTERING K-MEANS UNTUK PENGELOMPOKAN KELULUSAN MAHASISWA BERBASIS KOMPETENSI
Abstract
perengkrutan partners with AMIK Labuhanbatu. Competence of each student graduation taking
influence the employee in question, so as not to disappoint both sides. In this study, the authors try to
classify the data using a competency-based graduation one simple data mining techniques, namely
clustering technique (clustering) two-dimensional, which means the two variables that will be used in
grouping the graduation GPA and the value of student competencies that. Algorithms used in the
grouping (clustering) using the K-Means algorithm that starts with a random selection of K, which is
the number of clusters to be formed from the data to be in the cluster. This testing is done manually
in addition also performed with the RapidMiner data mining application of 46 records. From the
results of a study of 46 records were done manually or using RapidMiner data mining applications
have 3 groups of competency-based graduation with similar results between the two tests, namely
Cluster 1 consists of passing information to the student with IPK of 30.0 to 31.7 and 62.50 to
Competency with 71,50 the number of members of cluster 13. Cluster 2 consists of graduation students
with IPK of 30.0 to 33.5 and 81.00 to 89.00 competencies that number 18 cluster members. Cluster 3
consists of graduate students with IPK of 30.0 to 33.8 and 72.50 to 79.00 competencies that number
15 cluster members.
Full Text:
PDFReferences
Baskoro (2010). Implementasi Algoritma KMeans Menggunakan Data Penyewaan Alat
Berat Untuk Melakukan Estimasi Nilai
Outcome, Fakultas Ilmu Komputer,
Universitas Pembangunan Nasional
â€Veteranâ€, Jakarta.
Besdek (1981). Euclidean. dlm. Eko Prasetyo.
Data Mining : Konsep dan Aplikasi
Menggunakan Matlab, Yogyakarta: ANDI.
Budi Santoso (2007), Data Mining Teknik
Pemanfaatan Data untuk Keperluan Bisnis.
Yogyakarta : Graha Ilmu.
Cary Liniker Simbolon, Nilamsari Kusumastuti
dan Beni Irawan (2013), Buletin Ilmiah Mat.
Stat. Dan Terapannya (Bimaster). Clustering
Lulusan Mahasiswa Matematika FMIPA
UNTAN Pontianak Menggunakan Algoritma
Fuzzy C-Means. 2 . 21-26
Carlos Ordonez (2004). Industry/Government
Track Poster. Programming The K-Means
Clustering Algorithm in SQL. 1-6
Davies, and Paul Beynon (2004). Database
Systems Third Edition. Palgrave Macmillan.
Eko Prasetyo (2012). Data Mining : Konsep dan
Aplikasi Menggunakan Matlab, Edisi 1,
Yogyakarta : Andi.178-201.
Elmasri, Ramez and Shamkant B. Navathe,
(2000), “Fundamentals of Database
Systems. Third Editionâ€, Addison Wesley
Publishing Company, New York.
Han, Jiawei, Kamber dan Micheline (2006),
Data Mining Concepts and Techniques
Second Edition.
Iko Pramudiono (2003). Pengantar Data Mining
: Menambang Permata Pengetahuan di
Gunung Data. Kuliah Umum
IlmuKomputer.Com. 1-4
Mahendiran et.al, (2012), Implementation of KMeans Clustering in Cloud Computing
Environment.
Michael W. Trosset (2008). Department of
Statistics. Representing Clusters : K-Means
Clustering, Self-Organizing Maps, and
Multidimensional Scaling. 8. 1-18
Narwati (2006), Pengelompokan Mahasiswa
Menggunakan Algoritma K-Means. 1-7
Tan, P; Steinbach; & Kumar, (2006), V,
Introduction to Data Mining. Pearson
Education.
Tapas Kanungo et. all (2002). Ieee Transactions
On Pattern Analysis And Machine
Intelligence. An Efficientk-Means Clustering
Algorithm: Analysis and Implementation. 24.
-12
U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, (1996), Advances in
Knowledge Discovery and Data Mining,
AAAI/MIT Press.
Tedy Rismawan dan Sri Kusumadewi (2008).
Seminar Nasional Aplikasi Teknologi
Informasi 2008 (SNATI 2008). Aplikasi KMeans Untuk Pengelompokan Mahasiswa
Berdasarkan Body Mass Index (BMI) dan
Ukuran Kerangka. E43-E47
Vance Faber (1994). Los Alamos Science.
Clustering and The Continuous K-Means
Algorithm. 22. 1-7
Witten, Ian H. and Frank, Eibe, (2005), Data
Mining Practical Machine Learning Tools
and Techniques, Second Edition.
Widyawati, (2010), Perbandingan Clustering
Based On Frequent Word Sequence (CFWS)
Dan K-Means Untuk Pengelompokan
Dokumen Berbahasa Indonesia. Fakultas
Pendidikan Matematika Dan Ilmu
Pengetahuan Alam, Universitas Pendidikan
Indonesia, Bandung,
Yiu-Ming Cheung (2003). Pattern Recognition
Letters. K-Means: A New Generalized KMeans Clustering Algorithm. 24. 1-11
Yudi Agusta (2007), Sistem dan Informatika. KMeans Penerapan, Permasalahan dan
Metode Terkait. 3. 47-60.
DOI: https://doi.org/10.36987/informatika.v6i1.738
INFORMATIKA
Journal URL: https://jurnal.ulb.ac.id/index.php/informatika
Journal DOI: 10.36987/informatika
P-ISSN: 2303-2863
E-ISSN: 2615-1855
Alamat Redaksi :
Fakultas Sains dan Teknologi, Universitas Labuhanbatu
Gedung Fakultas Sains dan Teknologi,
Jalan Sisingamangaraja No.126 A KM 3.5 Aek Tapa, Bakaran Batu, Rantau Sel., Kabupaten Labuhan Batu, Sumatera Utara 21418