Plant Effectiveness of Acorus calamus, Pistia stratiotes, Azolla pinnata as Hyperaccumulator Candidate of Phytoremediation Agent for Copper (Cu) Absorption

Juriyah Astika Dewi, Isnaini Nurwahyuni, Erman Munir

Abstract


Metals are harmful pollutants because they cannot be broken down by living organisms. An excess of metal can become toxic. The metal in question is copper (Cu). This research aimed to determine the phytoremediation effectiveness of Acorus calamus, Pistia stratiotes, and Azolla pinnata as candidates for Cu metal absorption. This investigation employed a wholly random factorial design with two factors: plant absorbent materials comprised of three plant species (Acorus calamus, Pistia stratiotes, and Azolla pinnata) and absorption concentrations of 2 and 5 ppm. The ANOVA test was used to analyze the data, followed by the average difference test. According to the results of this study, three plants—Acorus calamus, Pistia stratiotes, and Azolla pinnata—are capable of reducing Cu metal in water. The Acorus calamus plant can reduce Cu concentrations in water from 2 ppm to 96.85% and from 5 ppm to 96.80%. Pistia stratiotes plants can reduce Cu level in water from 2 ppm to 96.50% and 5 ppm to 99.94% at concentrations of 2 and 5 ppm, respectively. The Azolla pinnata plant can reduce Cu level in water from 2 ppm to 98.50% and from 5 ppm to 96.54% at concentrations of 2 ppm and 5 ppm, respectively. The highest BCF value at a concentration of 2 ppm is in the roots of Azolla pinnata plants, at 6.77 mg/kg, followed by the leaves, at 8.88 mg/kg. The maximum BCF value at a concentration of 5 ppm for Pistia stratiotes plants is 2.26 mg/kg for the roots and 2.46 mg/kg for the foliage. The greatest concentration of TF at 2 ppm in Azolla pinnata is 1.31 mg/kg, while the maximum concentration at 5 ppm in Acorus calamus is 1.98 mg/kg

Keywords


Cu, Acorus calamus, Pistia stratiotes, Azolla pinnata

Full Text:

PDF

References


Cai, L. M., Wang, Q. S., Luo, J., Chen, L. G., Zhu, R. L., Wang, S., & Tang, C. H. (2019). Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China. Science of the Total Environment, 650, 725–733. https://doi.org/10.1016/j.scitotenv.2018.09.081

Chand, A., Chand, P., Khatri, G. G., & Paudel, D. R. (2021). Enhanced removal efficiency of arsenic and copper from aqueous solution using activated acorus calamus based adsorbent. Chemical and Biochemical Engineering Quarterly, 35(3), 279–293. https://doi.org/10.15255/CABEQ.2021.1943

Ding, D., Tan, G., Zhang, Q., Tao, D., Zhang, H., Li, G., & Hu, N. (2022). Enhancement effects of weak electric field on uranium and manganese removal from leachate of uranium tailings impoundment by artificial wetland. Journal of Cleaner Production, 363(May), 132601. https://doi.org/10.1016/j.jclepro.2022.132601

Eid, E. M., Shaltout, K. H., Moghanm, F. S., Youssef, M. S. G., El-Mohsnawy, E., & Haroun, S. A. (2019). Bioaccumulation and translocation of nine heavy metals by eichhornia crassipes in Nile delta, Egypt: Perspectives for phytoremediation. International Journal of Phytoremediation, 21(8), 821–830. https://doi.org/10.1080/15226514.2019.1566885

Ergönül, M. B., Nassouhi, D., & Atasağun, S. (2020). Modeling of the bioaccumulative efficiency of Pistia stratiotes exposed to Pb, Cd, and Pb + Cd mixtures in nutrient-poor media. International Journal of Phytoremediation, 22(2), 201–209. https://doi.org/10.1080/15226514.2019.1652566

Irawanto, R., & Munandar, A. A. (2017). Kemampuan tumbuhan akuatik Lemna minor dan Ceratophyllum demersum sebagai fitoremediator logam berat timbal (Pb). Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 3(3), 446–452. https://doi.org/10.13057/psnmbi/m030325

Kumar, V., Singh, J., Saini, A., & Kumar, P. (2019). Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). Environmental Sustainability, 2(1), 55–65. https://doi.org/10.1007/s42398-019-00050-8

Muthusaravanan, S., Sivarajasekar, N., Vivek, J. S., Paramasivan, T., Naushad, M., Prakashmaran, J., Gayathri, V., & Al-Duaij, O. K. (2018). Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental Chemistry Letters, 16(4), 1339–1359. https://doi.org/10.1007/s10311-018-0762-3

Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., & Gascó, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth, 5(1), 65–75. https://doi.org/10.5194/se-5-65-2014

Sigcau, K., van Rooyen, I. L., Hoek, Z., Brink, H. G., & Nicol, W. (2022). Online Control of Lemna minor L. Phytoremediation: Using pH to Minimize the Nitrogen Outlet Concentration. Plants, 11(11). https://doi.org/10.3390/plants11111456

Singha, K. T., Sebastian, A., & Prasad, M. N. V. (2019). Iron plaque formation in the roots of Pistia stratiotes L.: importance in phytoremediation of cadmium. International Journal of Phytoremediation, 21(2), 120–128. https://doi.org/10.1080/15226514.2018.1474442

Tabinda, A. B., Irfan, R., Yasar, A., Iqbal, A., & Mahmood, A. (2018). Phytoremediation potential of Pistia stratiotes and Eichhornia crassipes to remove Chromium and Copper Phytoremediation potential of Pistia stratiotes and Eichhornia crassipes to remove chromium and copper. Environmental Technology, 0(0), 1–6. https://doi.org/10.1080/09593330.2018.1540662

Talebi, M., Ebrahim, B., Tabatabaei, S., & Akbarzadeh, H. (2019). Chemosphere Hyperaccumulation of Cu , Zn , Ni , and Cd in Azolla species inducing expression of methallothionein and phytochelatin synthase genes. Chemosphere, 230, 488–497. https://doi.org/10.1016/j.chemosphere.2019.05.098




DOI: https://doi.org/10.36987/jpbn.v9i2.4291

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Juriyah Astika Dewi, Isnaini Nurwahyuni, Erman Munir

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

 

 

 

 

 

 

 

 

 

 

Lisensi Creative Commons

Jurnal Pembelajaran dan Biologi Nukleus by LPPM Universitas Labuhanbatu is under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY - NC - SA 4.0)