Analysis of Ecological Role and Biotechnology Potential of Marine Yeast Rhodotorula sp. in Mangrove Forest of Pari Island, Jakarta
Abstract
Mangrove forests have a very diverse microbial population. Among these microbes, some have the ability to convert mangrove forest organic waste into useful nutrients for the sustainability of the mangrove ecosystem. One of the species that has this ability is the marine yeast Rhodotorula sp. Apart from this ecological role, the yeast Rhodotorula sp. reported to have a lot of biotechnology potential, including as a producer of lipid omega-3, carotenoids, anti-bacterial, plant growth promoter, anti-cancer, biosurfactant, and a very potential workhorse for biotechnology applications. As a country that has the largest mangrove forest in the world, Indonesia has not reported much and has not intensified the use of marine yeast Rhodotorula sp. from Indonesian mangrove forests as a bioresource for high-value strategic products. This study aims to isolate the marine yeast Rhodotorula sp. from the mangrove forest of Pari island, Jakarta and reviewing the ecological role and biotechnological potential of these species. Marine yeast Rhodotorula sp. obtained will be cultivated and exploited its biotechnology potential in the future
Keywords
Full Text:
PDFReferences
Elfeky, N., Elmahmoudy, M., & Bao, Y. (2020). Manipulation of culture conditions: Tool for correlating/improving lipid and carotenoid production by Rhodotorula glutinis. Processes, 8(2). https://doi.org/10.3390/pr8020140
Fujii, T., Ogawa, T., & Fukuda, H. (1987). Isobutene production by, 430–433.
Gharaghani, M., Halvaeezadeh, M., & Mahmoudabadi, A. Z. (2019). Evaluation laboratory produced biosurfactant by Rhodotorula species and its antifungal activity, (March), 1–6. https://doi.org/10.20944/preprints201903.0113.v1
Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., … Duke, N. (2011). Status and distribution of mangrove forests of the world using earth, 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x
Grigore, D. M., Ungureanu-Iuga, M., Pogurschi, E. N., & Băbeanu, N. E. (2023). Transforming Rhodotorula sp. Biomass to Active Biologic Compounds for Poultry Nutrition. Agriculture (Switzerland), 13(6). https://doi.org/10.3390/agriculture13061159
Hartati, S., Tarina, L., Yulia, E., & Djaya, L. (2019). Potency of Rhodotorula minuta as Plant Growth Promoter on Red Chili Plant Infected by Colletotrichum acutatum. CROPSAVER - Journal of Plant Protection, 2(2), 47. https://doi.org/10.24198/cropsaver.v2i2.22542
Hartati, S., Wiyono, S., Hidayat, S. H., & Sinaga, M. S. (2017). Karakterisasi Morfologi dan Pemanfaatan Sumber Karbon oleh Khamir Antagonis Patogen Antraknosa. Jurnal Mikologi Indonesia, 1(2), 47. https://doi.org/10.46638/jmi.v1i2.19
Hutari, A., An Nisaa, R., Suhendra, S., Agustin, Y., & Ayunda, K. A. (2022). Exploration Of High Economic Value Microalgaes In The Mangrove Area Of Pari Island, Seribu Islands, Jakarta. Jurnal Pembelajaran Dan Biologi Nukleus, 8(3), 662–672. https://doi.org/10.36987/jpbn.v8i3.3096
Indratmi, D. (2012). Pengembangan Teknologi Produksi Khamir Rhodotorula Sp. Sebagai Agensia Pengendali Hayati Penyakit Antraknosa Pada Cabai. Agronomi, Fakultas Pertanian Dan Peternakan Universitas Muhammadiyah Malang, 7(2), 14–22. Retrieved from http://ejournal.umm.ac.id/index.php/gamma/issue/view/238/showToc
Kot, A. M., Błażejak, S., Kurcz, A., Gientka, I., & Kieliszek, M. (2016). Rhodotorula glutinis—potential source of lipids, carotenoids, and enzymes for use in industries. Applied Microbiology and Biotechnology, 100(14), 6103–6117. https://doi.org/10.1007/s00253-016-7611-8
Lane, D. M., Valentine, D. L., & Peng, X. (2023). Genomic analysis of the marine fungi Rhodotorula sphaerocarpa ETNP2018 reveals adaptation to the open ocean. Research Square, 1–14. https://doi.org/10.1186/s12864-023-09791-7
Li, Z., Li, C., Cheng, P., & Yu, G. (2022). Rhodotorula mucilaginosa—alternative sources of natural carotenoids, lipids, and enzymes for industrial use. Heliyon, 8(11), e11505. https://doi.org/10.1016/j.heliyon.2022.e11505
Maza, D. D., Viñarta, S. C., Su, Y., Guillamón, J. M., & Aybar, M. J. (2020). Growth and lipid production of Rhodotorula glutinis R4, in comparison to other oleaginous yeasts. Journal of Biotechnology, 310(October 2019), 21–31. https://doi.org/10.1016/j.jbiotec.2020.01.012
Miranda, A. F., Nham Tran, T. L., Abramov, T., Jehalee, F., Miglani, M., Liu, Z., … Mouradov, A. (2020). Marine Protists and Rhodotorula Yeast as Bio-Convertors of Marine Waste into Nutrient-Rich Deposits for Mangrove Ecosystems. Protist, 171(3), 125738. https://doi.org/10.1016/j.protis.2020.125738
Oloke, J. K., & Glick, B. R. (2005). Production of bioemulsifier by an unusual isolate of salmon/red melanin containing Rhodotorula glutinis. African Journal of Biotechnology, 4(2), 164–171.
Park, Y. K., Nicaud, J. M., & Ledesma-Amaro, R. (2018). The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications. Trends in Biotechnology, 36(3), 304–317. https://doi.org/10.1016/j.tibtech.2017.10.013
Pino-Maureira, N. L., González-Saldía, R. R., Capdeville, A., & Srain, B. (2021). Rhodotorula strains isolated from seawater that can biotransform raw glycerol into docosahexaenoic acid (Dha) and carotenoids for animal nutrition. Applied Sciences (Switzerland), 11(6). https://doi.org/10.3390/app11062824
Sharma, R., & Ghoshal, G. (2020). Optimization of carotenoids production by Rhodotorula mucilaginosa (MTCC-1403) using agro-industrial waste in bioreactor: A statistical approach. Biotechnology Reports (Vol. 25). Elsevier B.V. https://doi.org/10.1016/j.btre.2019.e00407
Silambarasan, S., Logeswari, P., Cornejo, P., & Kannan, V. R. (2019). Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions. International Journal of Biological Macromolecules, 121, 55–62. https://doi.org/10.1016/j.ijbiomac.2018.10.016
Vidya, P., Kutty, S. N., & Sebastian, C. D. (2022). Extraction, Characterization and Antimicrobial Properties of Pigments from Yeast, Rhodotorula mucilaginosa Isolated from the Mangrove Sediments of North Kerala, India. Asian Journal of Biological and Life Sciences, (January), 559–565. https://doi.org/10.5530/ajbls.2021.10.74
Wirth, F., & Goldani, L. Z. (2012). Epidemiology of rhodotorula: An emerging pathogen. Interdisciplinary Perspectives on Infectious Diseases, 2012. https://doi.org/10.1155/2012/465717
Yoo, A. Y., Alnaeeli, M., & Park, J. K. (2016). Production control and characterization of antibacterial carotenoids from the yeast Rhodotorula mucilaginosa AY-01. Process Biochemistry, 51(4), 463–473. https://doi.org/10.1016/j.procbio.2016.01.008
Zhang, W., Wu, J., Zhou, Y. J., Liu, H. J., & Zhang, J. A. (2019). Enhanced lipid production by Rhodotorula glutinis CGMCC 2.703 using a two-stage pH regulation strategy with acetate as the substrate. Energy Science and Engineering, 7(5), 2077–2085. https://doi.org/10.1002/ese3.413
DOI: https://doi.org/10.36987/jpbn.v10i1.5406
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Andri Hutari
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Jurnal Pembelajaran dan Biologi Nukleus (JPBN) by LPPM Universitas Labuhanbatu is under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY - SA 4.0). Official contact: Rivo +6281362238917