The Effect of Callus Age on Biomass and Flavonoid Production in Talinum paniculatum In Vitro Culture

Ratih Restiani, Dwi Aditiyarini, Anggel Christia Dolonseda, Yohana Elsa Nathania

Abstract


Talinum paniculatum (Javanese Ginseng) is an herbaceous plant belonging to Talinaceae family that has been known as an important medicinal plant. Flavonoid is one of the prominent bioactive compounds that are contained in all parts of T. paniculatum and has been known for its several bioactivities, including antioxidant, anti-inflammatory, antimicrobial, antidiabetic, and anti-cancer. Callus culture can be used to ensure the quantity and quality of flavonoid production. Callus age is one of the important factors that needs to be considered in order to produce optimum biomass and flavonoid production. Therefore, this research aimed to investigate the effect of callus age on biomass and flavonoid production in T. panicultaum in vitro culture. Young leaves were used as an explant, and callus induction was performed using MS solid media supplemented with kinetin 3 mg/L and 2.4-D 2 mg/L. Biomass and flavonoid production were observed during 0, 28, 35, 42, and 49 days. Results showed that biomass and flavonoid production were influenced by callus age. The production of flavonoid in T. paniculatum callus culture was not linear with the growth of callus (biomass), and the optimum flavonoid production resulted in the 28th days of callus age (49.100 mg QE/g), while the optimum biomass resulted in the 49th days of callus age (4.295 g). It can be concluded that the optimum conditions for biomass and flavonoid production in T. paniculatum callus culture are influenced by different callus ages


Keywords


Biomass, Bioactive compounds, Callus, Flavonoid production, Talinum paniculatum

Full Text:

PDF

References


Aini, F. N., & Susilo, S. (2023). Phytochemical Profiling of Javanese Ginseng (Talinum paniculatum) Stem Extract Using GC-MS Analysis and Pharmacological Potential. Tropical Journal of Natural Product Research, 7(7), 3272–3278. https://doi.org/10.26538/tjnpr/v7i7.1

Bhojwani, S. S., & Dantu, P. K. (2013). Plant tissue culture: An introductory text. In Plant Tissue Culture: An Introductory Text. https://doi.org/10.1007/978-81-322-1026-9

Cerdeira, C. D., Da Silva, J. J., R. Netto, M. F., G. Boriollo, M. F., Santos, G. B., C. dos Reis, L. F., & P. L. Brigagão, M. R. (2020). Talinum paniculatum leaves with in vitro antimicrobial activity against reference and clinical strains of Staphylococcus aureus interfere in oxacillin action. Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(2), 432–451. https://doi.org/10.15446/rcciquifa.v49n2.89894

Chandran, H., Meena, M., Barupal, T., & Sharma, K. (2020). Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnology Reports, 26, e00450. https://doi.org/10.1016/j.btre.2020.e00450

Eddijanto, I., Restiani, R., & Aditiyarini, D. (2022). Elisitasi flavonoid menggunakan kitosan pada kultur kalus Ginseng Jawa (Talinum paniculatum Gaertn.). Sciscitatio: Journal for Biological Science, 3(2), 90–99.

Efferth, T. (2019). Biotechnology Applications of Plant Callus Cultures. Engineering, 5(1), 50–59. https://doi.org/10.1016/j.eng.2018.11.006

Habibah, N. A., Lutfiah, A., Liana, A., Tunjung, W. A. S., Indrowati, M., & Pa’ee, F. (2023). Callogenesis of Dayak Onion (Eleutherine palmifolia) Bulb in response of Picloram, 2.4-D, and Kinetin. Biosaintifika, 15(2), 270–280. https://doi.org/10.15294/biosaintifika.v15i2.46501

Habibah, N. A., Moeljopawiro, S., Dewi, K., & Indrianto, A. (2016). Flavonoid Production in Callus Cultures from Mesocarp Stelechocarpus burahol. Biosaintifika: Journal of Biology & Biology Education, 8(2), 214. https://doi.org/10.15294/biosaintifika.v8i2.6632

Habibah, N. A., Moeljopawiro, S., Dewi, K., & Indrianto, A. (2017). Flavonoid production, growth and differentiation of Stelechocarpus burahol (Bl.) hook. f. and th. cell suspension culture. Pakistan Journal of Biological Sciences, 20(4), 197–203. https://doi.org/10.3923/pjbs.2017.197.203

Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: Mechanisms of induction and repression. Plant Cell, 25(9), 3159–3173. https://doi.org/10.1105/tpc.113.116053

Indriani, R., Prihastanti, E., Budihastuti, R., & Nurchayati, Y. (2020). Effect of Subculture Frequency Toward Growth And Carotenoid Content from Tomato (Lycopersicon Esculentum Mill.) Callus. Jurnal Biodjati, 5(2), 303–315. https://doi.org/10.15575/biodjati.v5i2.5840

Jenie, I. M., & Indraswari, R. I. (2021). Hypoglycaemic effects of Javanese Ginseng (Talinum paniculatum (Jacq.) Gaertn.) root infusion on alloxan-induced diabetic rats. Jurnal Kedokteran Hewan - Indonesian Journal of Veterinary Sciences, 15(3), 84–91. https://doi.org/10.21157/

j.ked.hewan.v15i3.19568

Lakitan, B., Kartika, K., Widuri, L. I., Siaga, E., & Fadilah, L. N. (2021). Lesser-known ethnic leafy vegetables talinum paniculatum grown at tropical ecosystem: Morphological traits and non-destructive estimation of total leaf area per branch. Biodiversitas, 22(10), 4487–4495. https://doi.org/10.13057/biodiv/d221042

Lestario, L. N., Christian, A. E., & Martono, Y. (2009). Aktivitas Antioksidan Daun Ginseng Jawa (Talinum paniculatum Gaertn). Agritech: Jurnal Fakultas Teknologi Pertanian UGM, 29(2), 71–78.

Liu, X., Li, Y., Yang, H., & Zhou, B. (2018). Chloroplast genome of the folk medicine and vegetable plant talinum paniculatum (Jacq.) Gaertn.: Gene organization, comparative and phylogenetic analysis. Molecules, 23(4), 5–9. https://doi.org/10.3390/molecules23040857

Manuhara, Y., Kristanti, A. N., Utami, E., & Yachya, A. (2015). Effect of sucrose and potasium nitrate on biomass and saponin content of Talinum paniculatum Gaertn. hairy root in balloon-type bubble bioreactor. Asian Pacific Journal of Tropical Biomedicine, 5. https://doi.org/10.1016/j.apjtb.2015.09.009

Martínez, M. E., Jorquera, L., Poirrier, P., Díaz, K., & Chamy, R. (2023). Effect of Inoculum Size and Age, and Sucrose Concentration on Cell Growth to Promote Metabolites Production in Cultured Taraxacum officinale (Weber) Cells. Plants, 12(5). https://doi.org/10.3390/plants12051116

Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Natasha, K., & Restiani, R. (2019). Optimasi sterilisasi eksplan pada kultur in vitro ginseng jawa (Talium paniculatum). Symposium of Biology Education (Symbion), 2, 87–95. https://doi.org/10.26555/symbion.3512

Park, J. S., Seong, Z. K., Kim, M. S., Ha, J. H., Moon, K. B., Lee, H. J., Lee, H. K., Jeon, J. H., Park, S. U., & Kim, H. S. (2020). Production of flavonoids in callus cultures of Sophora flavescens aiton. Plants, 9(6), 1–13. https://doi.org/10.3390/plants9060688

Ramirez-Estrada, K., Vidal-Limon, H., Hidalgo, D., Moyano, E., Golenioswki, M., Cusidó, R. M., & Palazon, J. (2016). Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules, 21(2). https://doi.org/10.3390/molecules21020182

Restiani, R., Dolonseda, A. C., Kaban, S. M. P., Hutabarat, C. T., Sekar, A. A., Meliana, F. A., Linardi, M., Verrell, N., & KY, A. A. B. (2022). Efficient Callus and Shoot Induction Protocol from Leaf and Node Explants of Javanese Ginseng (Talinum paniculatum (Jacq.) Gaertn.). Scholars Journal of Agriculture and Veterinary Sciences, 9(12), 223–231. https://doi.org/10.36347/sjavs.2022.v09i12.003

Silalahi, M. (2022). Talinum paniculatum (Jacq.) Gertn (Kajian Pemanfaatannya sebagai Bahan Pangan dan Bioaktivitasnya). Jurnal Pro-Life, 9(1), 289–299. https://ejournal.uki.ac.id/index.php/prolife

Sugiyarto, L., & Kuswandi, P. (2014). Pengaruh 2, 4-Diklorofenoksiasetat (2, 4-D) Dan Benzyl Aminopurin (Bap) Terhadap Pertumbuhan Kalus Daun Binahong (Anredera. Jurnal Penelitian Saintek, 23–30. http://journal.uny.ac.id/index.php/saintek/article/view/2322

Tan, S. H., Musa, R., Ariff, A., & Maziah, M. (2010). Effect of plant growth regulators on callus, cell suspension and cell line selection for flavonoid production from pegaga (centella asiatica L. urban). American Journal of Biochemistry and Biotechnology, 6(4), 284–299. https://doi.org/10.3844/ajbbsp.2010.284.299

Tolouei, S. E. L., da Silva, G. N., Curi, T. Z., Passoni, M. T., Ribeiro, D. C. K., Meldola, H. G., Grechi, N., Hey, G. S., Souza, R. I. C., dos Santos, A. C., Beltrame, O. C., Dalsenter, P. R., Martino-Andrade, A. J., & Gasparotto Junior, A. (2021). Effects of Talinum paniculatum (Jacq.) Gaertn. leaf extract on general toxicity and pubertal development of rats. Human and Experimental Toxicology, 40(1), 124–135. https://doi.org/10.1177/0960327120945756




DOI: https://doi.org/10.36987/jpbn.v10i1.5417

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ratih Restiani

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

 

 

 

 

 

 

 

 

 

 

Lisensi Creative Commons

Jurnal Pembelajaran dan Biologi Nukleus by LPPM Universitas Labuhanbatu is under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY - NC - SA 4.0)