Biochar from Different Sections of Oil Palm Trunk Improves Biomass Accumulation and Nutrient Uptake in Pre-Nursery Oil Palm (Elaeis guineensis Jacq.) in Ultisol Media

Ebsan Marihot Sianipar, Siti Mardiana, Syahbudin Hasibuan

Abstract


The production of high quality seedlings is dependent on soil as planting media. Application of biochar derived from oil palm trunk onto oil palm seedling  has been scarcely studied, especially on ultisol planting media. This research investigated the effect of oil palm trunk biochar on vegetative growth and nutrient uptake of belowground and aboveground tissues of oil palm (Elaeis guineensis Jacq) in ultisol pre-nursery planting media. Three types of oil palm trunk biochar derived from top, middle, and bottom section were used in this research. The application rates were 1, 2, 3 and, 4 % (w/w) during 12 weeks in  a green house. This experiment used a non factorial randomized complete block design with three replications. The addition of biochars derived oil palm trunk (OPT) amendment significantly increased stem diameter, plant height, root biomass, shoot biomass. The highest respon rasio (RRs) for root and shoot biomass was 0.40, and 0.55, respectively, recorded at 2% application rates. The highest increase of N, P, and K uptake for belowground and aboveground tissues were resulted from B3 (3 % biochar top section), B2 (2 % biochar top section), and B2 (2 % biochar top section) treatments, respectively. Overall, the addition of biochar derived top section OPT at 2 % (w/w) could enhance stem diameter, RRs plant biomass, N, P, K uptake of belowground and aboveground tissues. The addition of biochar OPT at 2 % (w/w) should be recommendation in order to used as rate of biochar OPT for ultisols ammendment in oil palm pre-nursery

Keywords


Biochar; Biomass; Oil palm seedlings; Soil amendment

References


Ahmed, M. F., Kennedy, I. R., Choudhury, A., Kecskés, M. L., & Deaker, R. (2008). Phosphorus adsorption in some Australian soils and influence of bacteria on the desorption of phosphorus. Communications in Soil Science and Plant Analysis, 39,(9–10), 1269–1294. https://doi.org/10.1080/00103620802003963

Ainatul, A. A., Zainab, H., Othman, H., Zakaria, W., Lee, B. B,. & Noorulnajwa, D. Y. (2012). Characterization of physiochemical properties of biochar from different agricultural residues. Proceedings of the International Conference of ST-P21 In Kuala Lumpur, Malaysia, 2012. MICOTribe. Pp. 1–9.

Alibasyah, M. R. (2016). Changes in some physical and chemical properties of ultisols due to application of compost and dolomitic lime on terraced fields. Jurnal Floratek, 11(1), 75–87. https://doi.org/10.17969/floratek.v11i1.4687 [In Indonesian language]

Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits frombiochar application to temperate soils: a review. Plant Soil, 337, 1–18. https://doi.org/10.1007/s11104-010-0464-5

Biederman, L. A., & Harpole, W. S. (2012) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. Global Change Biology Bioenergy, 5(2), 202–214. https://doi.org/10.1111/gcbb.12037

Boateng, S. A., Zickermann, J., & Kornahrens, M. (2006). Poultry manure effect on growth and yield of maize. West African Journal of Applied Ecology, 9(1), 12-18. https://doi.org/10.4314/wajae.v9i1.45682

Borchard, N., Siemens, J., Ladd, B., Moller, A., & Amelung, W. (2014). Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural pratice. Soil and Tillage Research, 144, 184-194. https://doi.org/10.1016/j.still.2014.07.016

BPS-Statistics Indonesia. (2022). Indonesia Oil Palm Statistics 2021. Directorate of Food Crop, Horticulture and Estate Crop Statistics. https://www.bps.go.id. Accessed on 26th Juni 2024.

Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59(1), 39–46. http://dx.doi.org/10.1097/00010694-194501000-00006

Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—total. In: Page, A. L., Miller, R. H., & Keeney, D. R. (Eds), Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. Soil Science of America, Madison, Wisconsin. Pp. 595–624. https://doi.org/10.2134/agronmonogr9.2.2ed.c31

Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2007). Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 45(8), 629–634. http://dx.doi.org/10.1071/SR07109

Chan, K. Y.,Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46(5), 437- 444. http://dx.doi.org/10.1071/SR08036

Clough, T. J., Condron, L. M., Kammann, C., & Müller, C. (2013). A review of biochar and soil nitrogen dynamics. Agronomy, 3(2), 275–293. http://dx.doi.org/10.3390/agronomy3020275

Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. (2012). Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 3(1), 38–45. http://dx.doi.org/10.9790/5736-0313845

Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P. C. & Xu, J. 2017. Potential role of biochars in decreasing soil acdification-a critical review. Science of the Total Environment, 581-581, 601–611. http://dx.doi.org/10.1016/j.scitotenv.2016.12.169

Darmosarkoro, W., Harahap, I. Y., & Syamsuddin, E. (2001). Effects of drought on oil palm crops and mitigation efforts. Warta Pusat Penelitian Kelapa Sawit, 9(3), 83 - 96. Accessed 27th June 2024. [In Indonesian language]

DeLuca, T. H., Gundale, M. J., Mackenzie, M. D., & Jones, D. L. (2015). Biochar effects on soil nutrient transformation. In: Lehmann, J., & Joseph, S. (Eds), Biochar for Environmental Management: Science, Technology and Implementation. London: Routledge, Earthscan. Pp. 421-454.

Directorate General of Estates. (2019). Tree Crop Estate Statistics of Indonesia 2018 -2020. Secretariate of Directorate General. Agriculture Ministry of Indonesia. www.ditjenbun.pertanian.go.id. Acessed 25th June 2024.

Farrell, M., Macdonald, L. M., Butler, G., Chirino-Valle, I., & Condron, L. M. (2014). Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biology and Fertility of Soils, 50, 169–178. https://doi.org/10.1007/s00374-013-0845-z.

Hardjowigeno, S. (1993). Klasifikasi tanah dan pedogenesis. Jakarta: Akademika Pressindo. Pp. 320. [In Indonesian language]

Hassan, N., Abdullah, R., Khadiran, T., Elham, P., & Vejan, P. (2021). Biochar derived from oil palm trunk as a potential precursor in the production of high-performance activated carbon. Biomass Conversion and Biorefinery, 13(6), 1–17. https://doi.org/10.1007/s13399-021-01797-z

Hedges, L. V., Gurevitch, J. & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80(4), 1150–1156. http://doi.org/10.2307/177062

Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 237(2), 173–195. https://doi.org/10.1023/A:1013351617532

Jiang, Z., Lian, F., Wang, Z., & Xing, B. (2019). The role of biochars in sustainable crop production and soil resiliency. Journal of Experimental Botany, 71(2), 520-542. https://doi.org/10.1093/jxb/erz301

Keiluweit, M., Kleber, M., Sparrow, M. A., Simoneit, B. R. T. & Prahl, F. G. (2012). Solvent-extractable polycyclic aromatic hydrocarbons in biochar: Influence of pyrolysis temperature and feedstock. Environmental Science and Technology. 46 (17), 9333–9341. https://doi.org/10.1021/es302125k

Latifah, O., Ahmed, O. H., & Majid, N. M. A. (2018). Soil pH buffering capacity and nitrogen availability following compost application in a tropical acid soil. Compost Science & Utilization, 26(1), 1–15. http://dx.doi.org/10.1080/1065657X.2017.1329039

Lehmann, J., Da Silva, Jr. J. P., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaecological Anthrosol and a Ferralsol of the Central Amazon basin: fertiliser, manure and charcoal amendments. Plant Soil, 249(2), 343-357. http://dx.doi.org/10.1023/A:1022833116184

Lehmann, J. (2007). Bio‐energy in the black. Frontiers in Ecology and the Environment, 5(7), 381–387. https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2

Manolikaki, I., and E. Diamadopoulos. (2017). Ryegrass yield and nutrient status after biochar application in two Mediterranean soils. Archives of Agronomy and Soil Science, 63(8),1093−1107. http://purl.tuc.gr/dl/dias/FB51DF88-48F4-49DF-B094-17BF5F815D56

Macdonald, L. M., Farrell, M., Zwieten, L. V., & Krull, E. S. (2014). Plant growth responses to biochar addition: an Australian soils perspective. Biology and Fertility of Soils, 7, 1035-1045. https://doi.org/10.1007/s00374-014-0921-z

Meyer, S., Genesio, L., Vogel, I., Schmidt, H. P., Soja, G., Someus, E., Shackley, S., Verheijen, F. G. A., & Glaser, B. (2017). Biochar standardization and legislation harmonization. Journal of Environmental Engineering and Landscape Management, 25(2), 175–191. https://doi.org/10.3846/16486897.2016.1254640

Mills, H. A., & Jones Jr., J. B. (1996). Plant analysis handbook II: A practical sampling preparation, analysis and interpretation guide. Athens: Micro-Macro Publishing.

Nartey, O. D., & Zhao, B. (2014). Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: an overview. Advances in Materials Science and Engineering, 14(1), 715938. http://dx.doi.org/10.1155/2014/715398

Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 2nd Edition. ASA-SSSA, Madison. Pp. 539–579.

Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In: Sparks, D. L., et al., (Eds). Methods of Soil Analysis. Part 3 Chemical Methods, SSSA Book Series No. 5, SSSA and ASA, Madison. pp. 961–1010.

Oleszczuk, P., Jośko, I., & Kuśmierz, M. (2013). Biochar properties regarding to contaminants content and ecotoxicological assessment. Journal of Hazardous Materials, 260, 375−382. https://doi.org/10.1016/j.jhazmat.2013.05.044

Panhwar, Q. A., Naher, U. A., Radziah, O., Shamshuddin, J., & Razi, I. M. (2014). Bio-fertilizer, ground magnesium limestone and basalt applications may improve chemical properties of Malaysian acid sulfate soils and rice growth. Pedosphere, 24(6), 827–835. https://doi.org/10.1016/S1002-0160(14)60070-9

Penn, C. J., & Camberato. 2019. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture, 9(6), 120-131. https://doi.org/10.3390/agriculture9060120

Razali, N., & Kamarulzaman, N. Z. (2020). Chemical characterizations of biochar from palm oil trunk for palm oil mill effluent (POME) treatment. Materials Today: Proceedings, 31(1), 191–197. https://doi.org/10.1016/j.matpr.2020.02.219

Rondon, M A., Lehman, J., Ramirez, J., & Hurtado, M. (2007). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biology and Fertility of Soil, 43(6), 699-708. http://dx.doi.org/10.1007/s00374-006-0152-z

Rosenani, A. B., Rovica, R., Cheah, P. M., & Lim, C. T. (2016). Growth performance and nutrient uptake of oil palm seedling in prenursery stage as influenced by oil palm waste compost in growing media. International Journal of Agronomy, 2016(3), 1-8. https://doi.org/10.1155/2016/6930735

Sakulkit, P., Palamanit, A., Dejchanchaiwong, R., & Reubroycharoen, P. (2020). Characteristics of pyrolysis products from pyrolysis and co-pyrolysis of rubber wood and oil palm trunk biomass for biofuel and value-added applications. Journal of Environmental Chemical Engineering, 8(6), 104561. https://doi.org/10.1016/j.jece.2020.104561

Scotti, R., Bonanomi, G., Scelza, R., Zoina, A., & Rao, M. A. (2015). Organic amendments as sustainable tool to recovery fertility in intensive agricultural system. Journal of Soil Science and Plant Nutrition, 15(2), 333-352. http://dx.doi.org/10.4067/S0718-95162015005000031

Shi, R. Y., Hong, Z. N., Li, J. Y., Jiang, J., Kamran, M. A., Xu, R. K., & Qian, W. (2018). Peanut straw biochar increases the resistance of two Ultisols derived from different parent materials to acidification: A mechanism study. Journal of Environment Management, 210, 171-179. https://doi.org/10.1016/j.jenvman.2018.01.028

Sianipar, E. M., Hutapea, S., & Mardiana, S. (2022). Characterization of oil palm trunk biochar as soil amendment produced by using drum retort kiln. International Journal of Chemical and Biochemical Science, 22, 10 - 14.

Sianipar, E. M., Hutapea, S., Panjaitan, E., & Mardiana, S. (2024). Applicability Assessment of Oil Palm Trunk Biochar for Use as Soil Amendment: Morphology, Structure, and Chemical Properties. Science & Technology Asia, 29(1), 256–270. https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/250287

Sianipar, E. M., Hutapea, S., & Mardiana, S. (2025). Effects of oil palm trunk biochar on nutrient uptake and growth performance of oil palm seedlings in pre-nursery. Jurnal Agronomi Tanaman Tropika, 7(1), 281-288. https://doi.org/10.36378/juatika.v7i1.4131

Soil Research Institute. (2006). Map of Distribution of Soil in Indonesia. Bogor: Soil Research Institute Publishing

Subagyo. H., N. Suharta, & A.B. Siswanto. (2004). Agricultural Soils in Indonesia. In Indonesian Land Resources and Management. Soil and Agroclimate Research Centre, Agricultural Research and Development Unit office. Agriculture Department, Bogor. Pp. 21-66 [In Indonesian language]

Sung, C. T. B., Ishak, C. F., Abdullah, R., Othman, R., Panhwar, Q. A., & Aziz, M. M. A. (2017). Soil properties (physical, chemical, biological, mechanical). Soils of Malaysia, CRC Press. Pp. 103–154. https://doi.org/10.1201/b21934

Walworth, J. (2013). Nitrogen in soil and environment. College of Agriculture and Life Sciences. Arizona: Arizona University.

Wang, Y., Lin, Y., Chiu, P. C., Imhoff, P. T., & Guo, M. (2015). Phosphorus release behaviors of poultry litter biochar as a soil amendment. The Science of the Total Environment, 512-513, 454–463. http://dx.doi.org/10.1016/j.scitotenv.2015.01.093

Watson, M. E., & Isaac, R. A. (1990). Analytical instruments for soil and plant analysis. In: Westerman, R. L., (Ed). Soil Testing and Plant Analysis, 3rd Edition, SSSA Book Series 3. SSSA, Madison, 691–740. https://doi.org/10.2136/sssabookser3.3ed.c26

Xu, G., Sun, J., Shao, H., & Chang, S. X. (2014). Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecological Engineering, 62, 54–60. https://doi.org/10.1016/j.ecoleng.2013.10.027

Yahya, Z., Husin, A., Talib, J., Othman, J., Ahmed, O. H., & Jalloh, M. B. (2010). Oil palm (Elaeis guineensis) roots response to mechanization in Bernam series soil. American Journal of Applied Sciences, 7(3), 343-348. https://doi.org/10.3844/ajassp.2010.343.348

Yuan, J. H. & Xu, R. K. (2011). The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 27(1), 110-115. https://doi.org/10.1111/j.1475-2743.2010.00317.x




DOI: https://doi.org/10.36987/jpbn.v11i1.6932

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ebsan Marihot Sianipar, Siti Mardiana, Syahbudin Hasibuan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jurnal Pembelajaran dan Biologi Nukleus (JPBN) by LPPM Universitas Labuhanbatu is under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY - SA 4.0). Official contact: Rivo +6281362238917