Characterization and Quantification of Microplastics in Soil from Three Landfill Sites in Lampung Province, Indonesia
Abstract
Background: Microplastics are plastic waste that is smaller than 5 mm in size Microplastics have persistent properties and contain toxic or carcinogenic chemicals that can seep into the soil through osmosis and enter the food chain, thus impacting health and the environment. The purpose of this study is to determine the types of microplastics in the Three Final Processing Sites in Lampung Province and to determine the abundance of microplastics in the Three Final Processing Sites in Lampung Province. Methodology: Soil samples were taken using purposive sampling at three different points at the landfill on December 2024. visual identification and abundance of microplastics using microscope and FTIR (Fourier transform infrared) test. Findings: The highest abundance of microplastics was found at B1 and C1 landfill point (195 particles/Kg). The diversity of microplastic characteristics in the form of fragments, fibers, and films, the most fragment particles in soil samples. The color of microplastic particles is predominantly transparent, black and brown. The size range of microplastic particles found is between 2.12 -110.25 μm. Microplastic pollutants are polyethylene (PE), polyamide, polystyrene, and microplastics suspected to be PET. The results of this study reveal that plastics that have undergone physical or chemical degradation can more easily become small fragments, thus increasing the number of microplastics produced. Contribution: This study contributes to mapping the types and abundance of microplastics at three landfill sites in Lampung, Indonesia, through visual identification and FTIR analysis, and provides a scientific basis for monitoring soil contamination and environmental risks in the region
Keywords
References
Araujo, C. F., Nolasco, M. M., Ribeiro, A. M. P., & Claro, P. J. A. R. (2018). Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Research, 142, 426-440. https://doi.org/10.1016/j.watres.2018.05.060
Arpia, A. A., Chen, W. H., Ubando, A. T., Naqvi, S. R., & Culaba, A. B. (2021). Microplastic degradation as a sustainable concurrent approach for producing biofuel and obliterating hazardous environmental effects: A state-of-the-art review. Journal of Hazardous Materials, 418 (2021) 126381. https://doi.org/10.1016/j.jhazmat.2021.126381
Fiore, L., Serranti, S., Mazziotti, C., Riccardi, E., Benzi, M., & Bonifazi, G. (2022). Classification and distribution of freshwater microplastics along the Italian Po River by hyperspectral imaging. Environmental Science and Pollution Research, 29, 48588–48606.
Fuller, S., & Gautam, A. (2016). A procedure for measuring microplastics using pressurized fluid extraction. Environmental Science & Technology, 50, 5774-5780.
Hidalgo-Ruz, V., Gutow, L., Thompson R. C., & Thiel, M. (2012). Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental Science & Technology, 46(6), 3060-3075.
Layn, A. A., Emiyarti, & Ira. (2020). Distribusi mikroplastik pada sedimen di perairan Teluk Kendari. Sapa Laut, 5(2), 115–122.
Ling, D., Mao, R. F., Guo, X., Yang, X., Zhang, Q., & Yang, C. (2019). Microplastics in surface waters and sediments of the Wei River, in the northwest of China. Science of the Total Environment, 667, 427–434.
Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment. Marine Pollution Bulletin, 62(12), 2588–2597.
Massos, A., & Turner, A. (2017). Cadmium, lead and bromine in beached microplastics. Environmental Pollution, 227, 139–145.
Nizzetto, L., Futter, M., & Langaas, S. (2016). Are agricultural soils dumps for microplastics of urban origin? *ACS Publications*, New York, NY, USA.
Novarini, E., & Sukardan, M. D. (2015). Potensi serat rami (Boehmeria nivea S. Gaud) sebagai bahan baku industri tekstil dan produk tekstil. Arena Tekstil, 30(2), 113–122.
Pratiwi, O. A., Achmadi, U. F., & Kurniawan, R. (2024). Microplastic pollution in landfill soil: Emerging threats to environmental and public health. Environmental Analysis Health Toxicology, 39, e2024009
Prata, J. C., da Costa, J. P., Duarte, A. C., Santos, T. R. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150-159. https://doi.org/10.1016/j.trac.2018.10.029
Putra, H. P., Damanhuri, E., & Sembiring, E. (2019). Sektor baru pengelolaan sampah di Indonesia. Jurnal Sains dan Teknologi Lingkungan, 11(1), 11–24.
Rahmawati, A. (2015). Pengaruh penggunaan plastik polyethylene (PE) dan high density polyethylene (HDPE) pada campuran lataston-WC terhadap karakteristik Marshall. Jurnal Ilmiah Semesta Teknika, 18(2), 147–159.
Rochman, C. M. (2018). Microplastics research—from sink to source. Science, 360, 28–29.
Scheurer, M., & Bigalke, M. (2018). Microplastics in Swiss floodplain soils. Environmental Science & Technology, 52, 3591–3598.
Serly, G., Sugiyanto, I. G., & Nugraheni, I. L. (2013). Tinjauan geografis tempat pembuangan akhir sampah Bakung Kelurahan Bakung Tahun 2013. Jurnal Penelitian Geografi, 2(1), 1-10
Silverstein, R. M., Webster, F. X., Kiemle, D. J. (2014). Spectrometric Identification of Organic Compounds. 8th edition. New Jersey: Wiley.
Socrates, G. (2001). Infrared and Raman Characteristic Group Frequencies: Tables and Charts (3rd ed.). New Jersey: Wiley.
Sun, J., Zhu, Z., Li, W., Yan, X., Wang, L., Zhang, L., Jin, J., Dai, X., & Ni, B. (2021). Revisiting microplastics in landfill leachate: Unnoticed tiny microplastics and their fate in treatment works. Water Research, 190, 116784.
Xu, Z., Sui, Q., Li, A., Sun, M., Zhang, L., Lyu, S., & Zhao, W. (2020). How to detect small microplastics (20–100 µm) in freshwater, municipal wastewaters, and landfill leachates? A trial from sampling to identification. Science of the Total Environment, 733, 139218.
Yang, L., Zhang, Y., Kang, S., Wang, Z., & Wu, C. (2021). Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Science of the Total Environment, 780, 146546.
Zhang, L., Xie, Y., Liu, J., Zhong, S., Qian, Y., & Gao, P. (2020). An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. Environmental Science & Technology, 54, 4248–4255.
Zhang, Y., Liang, J., Zeng, G., Tang, W., Lu, Y., Luo, Y., Xing, W., Tang, N., Ye, S., Li, X., & Huang, W. (2020). How climate change and eutrophication interact with microplastic pollution and sediment resuspension in shallow lakes: A review. Science of the Total Environment, 705, 135979.
DOI: https://doi.org/10.36987/jpbn.v11i2.7487
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Lika Dini Almayda, Marlina Kamelia, Ade Lenty Hoya

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Pembelajaran dan Biologi Nukleus (JPBN) by LPPM Universitas Labuhanbatu is under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY - SA 4.0). Official contact: Rivo +6281362238917