Isolation and Identification of Gut Bacteria from Mealworm (Tenebrio molitor) with Potential for Microplastic Degradation
Abstract
Background: Plastic that accumulates in the environment over extended periods can fragment into smaller particles known as microplastics. The uncontrolled buildup of microplastics poses significant risks, including harmful health effects on living organisms and negative impacts on ecosystems. One promising sustainable solution under investigation is the use of gut bacteria from mealworm (Tenebrio molitor) for plastic biodegradation. This study aims to identify the gut bacterial species involved in degrading plastics ingested by mealworm fed with Polystyrene (PS), Polyethylene (PE), and Polyethylene Terephthalate (PET), and to evaluate the degradation rate exhibited by these bacteria. Methodology: Bacterial isolation was carried out from the gut of mealworm that were fed plastic for 30 days, using Mineral Salts Medium (MSM) as a selective medium, followed by testing the plastic degradation potential of the isolated gut bacteria. The microbial species involved were identified using the VITEX-2 Compact System. Findings: Bacteria isolated from the digestive tract of mealworm showed significant potential in degrading plastics. Pseudomonas aeruginosa was found in PS and PE treatments with degradation rates of 14.4% and 44.4%, respectively, while Aeromonas salmonicida was identified in the PET treatment with a degradation rate of 16.3%. Contribution: These findings highlight the role of mealworm gut microbes in degrading PS, PE, and PET, supporting their potential as eco-friendly biodegradation agents
Keywords
Full Text:
PDFReferences
Agarwal, T., Atray, N. & Sharma, J. G. (2024). A critical examination of advanced approaches in green chemistry: microbial bioremediation strategies for sustainable mitigation of plastic pollution. Future Journal of Pharmaceutical Sciences, 10(78), 1-24. https://doi.org/10.1186/s43094-024-00645-x.
Ali, S., Rehman, A., Hussain, S. Z. & Bukhari, D. A. (2023). Characterization of plastic degrading bacteria isolated from sewage wastewater. Saudi Journal of Biological Sciences, 30(5), 103628. https://doi.org/10.1016/j.sjbs.2023.103628.
Aromi, Z., Putri, O. A., & Rahayu, R. (2024). Plastic Waste Management in Indonesian Cities: Local Challenges and Participatory Approaches for Sustainable Solutions for Communities. Jurnal Ekologi, Masyarakat dan Sains, 5(2), 251-255. https://doi.org/10.55448/5f7d0846. [In Indonesian language]
Arwini, N. P. D. (2022). Plastic Waste and Efforts to Reduce Plastic Waste Generation. Jurnal Ilmiah Vastuwidya, 5(1), 72–82. [In Indonesian language]
Atanasova, N., Stoitsova, S., Paunova‐krasteva, T. & Kambourova, M. (2021). Plastic Degradation by Extremophilic Bacteria. International Journal of Molecular Sciences, 22 (5610), 1-19. https://doi.org/ 10.3390/ijms22115610.
Bhalsing, D. G., & Jawale, C. S. (2017). Isolation of bacteria from plastic dump soil. International Science Journal, 4 (2), 1-4. www.sciencejournal.in.
Bharagava, R. N., Mani, S., Mulla, S. I. & Saratale, G. D. (2018). Degradation and decolourization potential of an ligninolytic enzyme producing Aeromonas hydrophila for crystal violet dye and its phytotoxicity evaluation. Ecotoxicology and Environmental Safety, 156, 166–175. https://doi.org/10.1016/j.ecoenv.2018.03.012.
Breed, R. S., Murray, E.G.D. & Smith, N.R (1957). Bergey’s Manual of Determinative Bacteriology Seventh Edition. Baltimore: The Williams & Wilkins Company.
Brenner, D. J., Krieg, N. R. & Staley, J. T. (2005). Bergey’s Manual of Systematic Bacteriology 2nd Edition Volume 2 The Proteobacteria. Michigan: Michigan State University.
Carniel, A., Valoni, É., Nicomedes, J., Gomes, A. da C. & Castro, A. M. de. (2017). Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochemistry, 59, 1–25. https://doi.org/10.1016/j.procbio.2016.07.023.
Chaudhury, N., Mirza, S., Misra, R., Paul, R., Chaudhuri, S. S., Sen, S. (2018). Isolation and identification of various Pseudomonas species from distinct clinical specimens and the study of their antibiogram. Scholars Journal of Applied Medical Sciences (SJAMS), 6(12), 4964–4976. https://doi.org/10.21276/sjams.2018.6.12.59.
Danso, D., Chow, J. & Streita, W. R. (2019). Plastics: Environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology, 85(19), 1–14. https://doi.org/10.1128/AEM.01095-19.
Devi, M., Parasar, D. P., Sarma, M. P., Kashyap, M. P. & Deka, S. (2024). Isolation and molecular characterization of pigment producing bacteria from soil of different locality of assam. Journal of Pure and Applied Microbiology, 18(3), 1708–1720. https://doi.org/10.22207/jpam.18.3.20.
Dharmasiddhi, I. P. W., Chen, J., Arab, B., Lan, C., Euler, C., Chou, C. P. & Liu, Y. (2025). Engineering a cross-feeding synthetic bacterial consortium for degrading mixed pet and nylon monomers. Processes, 13(375), 1-14. https://doi.org/10.3390/pr13020375.
Fatti, C., Rumampuk, N. D. C., Gerung, G. S., Wullur, S., Mamuaja, J. M. & Ginting, E. L. (2025). Isolation and potential of plastic-degrading bacteria from plastic waste. Jurnal Ilmiah Platax, 13(1), 1–7. https://doi.org/10.35800/jip.v13i1.58358.
Gireesha, D., Patil, P. V., Gowda, G. R. V., Vijaykumar, K. N. & Doggalli, G. (2024). Morphological and biochemical characterization of bacillus subtilis isolated from rhizosphere of sugarbeet. Biochemical and Cellular Archives, 24(1), 1077–1082. https://doi.org/10.51470/bca.2024.24.1.1077.
Guerrero, G. A., & Guerrero, M. S. (2023). Biodegradation of single use plastic waste by insect larvae: a comparative study of yellow mealworms and superworms. Journal of Science in Agrotechnology, 1(2), 61–75. https://doi.org/10.21107/jsa.v1i2.14.
Gulnaz, O. & Dincer, S. (2009). Biodegradation of Bisphenol a by Chlorella vulgaris and Aeromonas Hydrophilia. Journal of Applied Biological Sciences, 3(2), 79–84.
Hartono, E. F. & Rachmat, N. (2022). Classification of HDPE, LDPE, and PS plastic types based on texture using the support vector machine method. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(2), 1403–1412. https://doi.org/10.35957/jatisi.v9i2.2470. [In Indonesian language]
Howard, S. A., de Dios, R., Maslova, E., Myridakis, A., Miller, T. H. & McCarthy, R. R. (2025). Pseudomonas aeruginosa clinical isolates can encode plastic-degrading enzymes that allow survival on plastic and augment biofilm formation. Cell Reports, 44(115650), 1-20. https://doi.org/10.1016/j.celrep.2025.115650.
Istiqomah, D. Y. (2020). Isolation, Identification, and Biodegradation Testing of LLDPE Plastic-Degrading Bacteria Isolated from the Jatimulyo Fan Palm Landfill, Malang City. Undergraduated theses of Chemisty, Universitas Islam Negeri Maulana Malik Ibrahim Malang, http://etheses.uin-malang.ac.id, 1–95. January 24Th 2025. [In Indonesian language]
Jain, R. & Tiwari, A. (2015). Biosynthesis of planet friendly bioplastics using renewable carbon source. Journal of Environmental Health Science and Engineering, 13(1), 1–5. https://doi.org/10.1186/s40201-015-0165-3.
Jamika, F. I., Razak, A., & Kamal, E. (2023). The impact of microplastic pollution in coastal and marine areas. Jurnal pasir laut. 7(1), 1-5. https://ejournal.undip.ac.id/index.php/pasirlaut. [In Indonesian language]
Jeon, H. J. & Kim, M. N. (2015). Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. International Biodeterioration and Biodegradation, 103, 141–146. https://doi.org/10.1016/j.ibiod.2015.04.024.
Labibah, W. & Triajie, H. (2020). The presence of microplastics in swanggi fish (Priacanthus tayenus), sediment and seawater in the coastal waters of Brondong, Lamongan Regency. Juvenil:Jurnal Ilmiah Kelautan Dan Perikanan, 1(3), 351–358. https://doi.org/10.21107/juvenil.v1i3.8563. [In Indonesian language]
Lee, H. M., Kim, H. R., Jeon, E., Yu, H. C., Lee, S., Li, J. & Kim, D. H. (2020). Evaluation of the biodegradation efficiency of four various types of plastics by Pseudomonas aeruginosa isolated from the gut extract of superworms. Microorganisms, 8(9), 1–12. https://doi.org/10.3390/microorganisms8091341.
Lee, Y., Cho, J., Sohn, J. & Kim, C. (2023). Health effects of microplastic exposures: current issues and perspectives in South Korea. Yonsei Medical Journal, 64(5), 301–308. https://doi.org/10.3349/ymj.2023.0048.
Lubitz, W., Maszenan, A. M., Patel, B. K. C. & Seviour, R. J. (2002). Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). International Journal of Systematic and Evolutionary Microbiology, 52(2), 629–637. https://doi.org/10.1099/ijs.0.01901-0.
Luqman, A., Nugrahapraja, H., Wahyuono, R. A., Islami, I., Haekal, M. H., Fardiansyah, Y., Putri, B. Q., Amalludin, F. I., Rofiqa, E. A., Götz, F. & Wibowo, A. T. (2021). Microplastic contamination in human stools, foods, and drinking water associated with indonesian coastal population. Environments, 8(12), 1–9. https://doi.org/10.3390/environments8120138.
Lv, S., Li, Y., Zhao, S. & Shao, Z. (2024). Biodegradation of Typical Plastics: From Microbial Diversity to Metabolic Mechanisms. International Journal of Molecular Sciences, 25(1), 1-25. https://doi.org/10.3390/ijms25010593.
Machado, A. A. D. S., Lau, C. W., Till, J., Kloas, W., Lehmann, A., Becker, R. & Rillig, M. C. (2018). Impacts of microplastics on the soil biophysical environment. Environmental Science and Technology, 52, 9656–9665. https://doi.org/10.1021/acs.est.8b02212.
Mahgoub, H., Mahgoub, T., Khair, O., Mohammed, M., Merghani, M., AlBushra, M., Hamdan, E., Altyab, H., Ahmed, H. & Elhassan, M. (2023). Frequency of multi-drug resistant Enterobacter species isolated from patients with different clinical manifestations in Khartoum State, Sudan. Egyptian Academic Journal of Biological Sciences, G. Microbiology, 15(1), 129–140. https://doi.org/10.21608/eajbsg.2023.296702.
Matyja, K., Rybak, J., Hanus-Lorenz, B., Wróbel, M. & Rutkowski, R. (2020). Effects of polystyrene diet on Tenebrio molitor larval growth, development and survival: Dynamic Energy Budget (DEB) model analysis. Environmental Pollution, 264, 1-11. https://doi.org/10.1016/j.envpol.2020.114740.
Mohanan, N., Montazer, Z., Sharma, P. K. & Levin, D. B. (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11(580709), 1-22. https://doi.org/10.3389/fmicb.2020.580709.
Nahar, S., Mizanur Rahman, M., Ahmed, G.U. & Faruk, Md. A.R. (2016). Isolation, identification, and characterization of Aeromonas hydrophila from juvenile farmed pangasius (Pangasianodon hypophthalmus). International Journal of Fisheries and Aquatic Studies, 4(4), 52–60. www.fisheriesjournal.com.
Napper, I. E. & Thompson, R. C. (2019). Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic parrier bags in the sea, soil, and open-air over a 3 year period. Environmental Science and Technology, 53(9), 4775–4783. https://doi.org/10.1021/acs.est.8b06984.
Octavia, B., Rakhmawati, A., Suhartini, Rachmani, L. D. & Putra, T. D. (2023). Low-density polyethylene sheet biodegradation by Tenebrio molitor and Zophobas morio larvae and metagenome studies on their gut bacteria. Biodiversitas, 24(2), 878–886. https://doi.org/10.13057/biodiv/d240225.
Oktari, A., Aprilani, M., Pudjiastuti, D. R. & Fadhila, F. (2023). Testing the effectiveness of mealworm beetle larvae (Tenebrio molitor) biodegradation on LDPE plastic and Styrofoam waste. Quagga: Jurnal Pendidikan dan Biologi, 15(1), 108–114. https://doi.org/10.25134/quagga.v15i1.6336. [In Indonesian language]
Olatayo, K. I., Mativenga, P. T., Marnewick, A. L., Olatayo, K. & Baker, P. (2021). Life cycle assessment of single-use and reusable plastic bottles in the city of Johannesburg. Research Article S Afr J Sci, 117(12), 1–10. https://doi.org/10.17159/Sajs.2021/8908.
Palm, G. J., Reisky, L., Böttcher, D., Müller, H., Michels, E. A. P., Walczak, M. C., Berndt, L., Weiss, M. S., Bornscheuer, U. T. & Weber, G. (2019). Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-019-09326-3.
Pascagaza, P. M. P., López-Ramírez, N. A. & Ballen-Segura, M. A. (2020). Tenebrio molitor and its gut bacteria growth in polystyrene (PS) presence as the sole source carbon. Universitas Scientiarum, 25(1), 37–53. https://doi.org/10.11144/JAVERIANA.SC25-1.TMAI.
Pinchi, J. E., Ordoñez Gálvez, J. J., Olivera, C. C. & Benites-Alfaro, E. (2022). Environmental biotechnology: biodegradation of microplastics with larvae of Tenebrio molitor and Galleria mellonella. Chemical Engineering Transactions, 93, 187–192. https://doi.org/10.3303/CET2293032.
Pironti, C., Ricciardi, M. & Montano, L. (2021). Microplastics in the environment: intake through the food web, human exposure and toxicological effects. Toxicology, 9(224), 1–29. https://doi.org/10.3390/ toxics9090224.
Przemieniecki, S. W., Kosewska, A., Ciesielski, S. & Kosewska, O. (2019). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environmental Pollution, 256(113265), 1-21. https://doi.org/10.1016/j.envpol.2019.113265.
Public Health England. (2015a). UK standards for microbiology investigations, identification of streptococcus species, enterococcus species and morphologically similar organisms. Bacteriology, 55 (5.2), 1-31.
Public Health England. (2015b). UK standards for microbiology investigations. In Bacteriology: 55 ( 5.2). 1-26.
Purnamasari, I., Suwarno & Tyasningsih, W. (2023). Identification of Staphylococcus sp. and antibiotic resistance in Tutur district, Pasuruan. Jurnal Medik Veteriner, 6(1), 93–104. https://doi.org/10.20473/jmv.vol6.iss1.2023.93-104.
Riandi, M., Kawuri, R. & Sudirga, S. (2017). In degrading plastic polymer waste made from high-density polyethylene (HDPE) and low-density polyethylene (LDPE). Jurnal Simbiosis, 5(2), 58-63. https://ojs.unud.ac.id/index.php/simbiosis/article/view/34827. [In Indonesian language]
Rodrigues, D. F., Goris, J., Vishnivetskaya, T., Gilichinsky, D., Thomashow, M. F. & Tiedje, J. M. (2006). Characterization of Exiguobacterium isolates from the Siberian permafrost. Description of Exiguobacterium sibiricum sp. nov. Extremophiles, 10(4), 285–294. https://doi.org/10.1007/s00792-005-0497-5.
Rohmah, U. M., Shovitri, M. & Kuswytasari, K. (2019). Plastic degradation by Aspergillus terreus (LM 1021) at pH 5 and pH 6; and temperatures of 25 and 35 oC. Jurnal Sains dan Seni ITS, 7(2), 60–65. https://doi.org/10.12962/j23373520.v7i2.37207. [In Indonesian language]
Rosato, A., Romano, A., Totaro, G., Celli, A., Fava, F., Zanaroli, G. & Sisti, L. (2022). Enzymatic degradation of the most common aliphatic bio-polyesters and evaluation of the mechanisms involved: an extended study. Polymers, 14(1850), 1-24. https://doi.org/10.3390/polym14091850.
Růžičková, M., Vítězová, M. & Kushkevych, I. (2020). The characterization of Enterococcus genus: resistance mechanisms and inflammatory bowel disease. Open Medicine (Poland), 15(1), 211–224. https://doi.org/10.1515/med-2020-0032.
Santo, M., Weitsman, R. & Sivan, A. (2012). The role of the copper-binding enzyme - laccase - in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration and Biodegradation, 84, 1-7. https://doi.org/10.1016/j.ibiod.2012.03.001.
Saputra, A., Prihatiningsih, N., Djatmiko, H. A. & Kurniawan, D. W. (2024). Isolation, characterization, and selection of Bacillus sp. from shallot rhizosphere that inhibits Fusarium oxysporum growth. Jurnal Perlindungan Tanaman Indonesia, 28(1), 27-32. https://doi.org/10.22146/jpti.89634.
Shahab, S., Iqra Shafi & Nuzhat Ahmed. (2017). Indigenous oil degrading bacteria: isolation, screening and characterization. In National Journal of Health Sciences, 2 (3),100-105. https://doi.org/10.21089/njhs.23.0100.
Shi, X., Qiu, S., Ji, L., Lu, H., Wu, S., Chen, Q., Zou, X., Hu, Q., Feng, T., Chen, S., Cui, W., Xu, S., Jiang, M., Cai, R., Geng, Y., Bai, Q., Huang, D. & Liu, P. (2023). Pathogenetic characterization of a Micrococcus luteus strain isolated from an infant. Frontiers in Pediatrics, 11(2), 1-8. https://doi.org/10.3389/fped.2023.1303040.
Shimpi, N., Borane, M., Mishra, S. & Kadam, M. (2012). Biodegradation of polystyrene (PS)-poly(lactic acid) (PLA) nanocomposites using Pseudomonas aeruginosa. Macromolecular Research, 20(2), 181–187. https://doi.org/10.1007/s13233-012-0026-1.
Su, S. S., Lae, K. Z. W. & Ngwe, H. (2018). Isolation and identification of Pseudomonas aeruginosa from clinical samples. University of Yangon Research Journal, 8(2), 271-175.
Sulistiyani, T. R., Kusmiati, M. & Putri, G. A. (2021). The 16S rRNA Analysis and Enzyme Screening of Bacillus from Rhizosphere Soil of Lombok Island. Jurnal Ilmu Pertanian Indonesia, 26(4), 582–590. https://doi.org/10.18343/jipi.26.4.582.
Sumardi, Farisi, S., Ekowati, C. N. & Listiyorini, C. I. (2021). Isolation and characterization Bacillus sp. producing cellulase enzymes from hanura mangrove. Proceedings of the International Conference on Sustainable Biomass (ICSB 2019), 202, 21–25. https://doi.org/10.2991/aer.k.210603.004.
Tedesco, P., Palma Esposito, F., Masino, A., Vitale, G. A., Tortorella, E., Poli, A., Nicolaus, B., van Zyl, L. J., Trindade, M. & de Pascale, D. (2021). Isolation and characterization of strain Exiguobacterium sp. Krl4, a producer of bioactive secondary metabolites from a tibetan glacier. Microorganisms, 9(890), 1-17. https://doi.org/10.3390/microorganisms9050890.
Uwanta, L. I., Orji, M. U., Agu, K. C., Udenweze, E. C. & Umeoduagu, N. D. (2023). Pseudomas Aeruginosa isolated from vermicompost in the degradation of varying concentration of Polyvinyl Chloride (Pvc) and Polyvinyl Alcohol (Pva). International Journal Of Research Publication And Reviews, 4(8), 547-553.
Vianti, R. O., Melki, Rozirwan & Purwiyanto, A. I. S. (2020). Purification and bacterial degradation testing of microplastics from the estuary of the Musi River, South Sumatra. Maspari Journal, 12(2), 29–36. [In Indonesian language]
Vos, P., George M. Garrity, Dorothy Jones, Noel R. Krieg, Wolfgang Ludwig, Fred A. Rainey, K.-H. S. and W. B. W. (2011). Bergey’s Manual of Systematic Bacteriology 2nd Edition Volume Three The Firmicutes. New York: Springer.
Wati, N. S., Armaini, Alfajri, T. & Sahira, I. (2021). Effectiveness of bacteria isolated from the Padang cold water landfill for plastic waste degradation. Jurnal Kimia Saintek dan Pendidikan, 5(2), 104–109. [In Indonesian language]
Wei, R. & Zimmermann, W. (2017). Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?, Microbial Biotechnology, 10(6), 1-15. https://doi.org/10.1111/1751-7915.12710.
Xue, H., Chen, X., Jiang, Z., Lei, J., Zhou, J., Dong, W., Li, Z., Hu, G. & Cui, Z. (2025). Biodegradation of polypropylene by Bacillus cereus PP-5 isolated from waste landfill. Ecotoxicology and Environmental Safety, 296(118205), 1-10. https://doi.org/10.1016/j.ecoenv.2025.118205.
Yi, X., Chen, Y., Cai, H., Wang, J., Zhang, Y., Zhu, Z. Q., Lin, M., Qin, Y., Jiang, X. L. & Xu, X. (2022). The temperature-dependent expression of type II secretion system controls extracellular product secretion and virulence in mesophilic Aeromonas salmonida SRW-OG1. Frontiers in Cellular and Infection Microbiology, 12(2), 1–16. https://doi.org/10.3389/fcimb.2022.945000.
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y. & Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351(6278), 1196–1199. https://doi.org/10.1126/science.aaf8305.
Zendejas, G., Avalos, H. & Soto, M. (2014). Microbiologia general de Staphylococcus aeurus: Generalidades de patogenecidad, metodos de identificacion. Revista Biomed, 25(3), 129–143.
Zuo, L., Sun, Y., Li, H., Hu, Y., Lin, L., Peng, J. & Xu, X. (2020). Microplastics in mangrove sediments of the Pearl River Estuary, South China: Correlation with halogenated flame retardants’ levels. Science of the Total Environment, 725 (138344). https://doi.org/10.1016/j.scitotenv.2020.138344.
DOI: https://doi.org/10.36987/jpbn.v11i2.7496
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Istiana Irbah, Marlina Kamelia, Ovi Prasetya Winandari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Pembelajaran dan Biologi Nukleus (JPBN) by LPPM Universitas Labuhanbatu is under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY - SA 4.0). Official contact: Rivo +6281362238917