A Comparative Review of Chitinase Enzymes from Microbial and Mammalian Origins and Their Roles in Health Applications
Abstract
Background: Chitinase is an enzyme crucial in chitin biodegradation, breaking the 1,4-N-α-acetyl-D-glucosamine bonds of its monomers. It is produced by a wide range of organisms, from microorganisms such as bacteria and fungi to macroorganisms including humans. Chitinases have been widely studied for applications in biological control, environmental management, and medical fields, including immune modulation and infection therapy. However, there is still a research gap due to the limited number of systematic comparative studies examining the structural, genetic, and functional differences among chitinases from various biological sources. This limitation hinders optimal and targeted use of chitinases in enzyme-based technologies, particularly for medical applications. Therefore, comprehensive studies are needed not only to describe chitinases by their sources but also to evaluate their practical potential and innovative opportunities for human health. Methods: This study uses a narrative literature review approach. Articles were collected, screened, and systematically organized according to their scope, focusing on chitinase sources, mechanisms of action, and applications in healthcare. Results: The analysis shows fundamental differences in domain structure, gene expression, and catalytic mechanisms of chitinases from bacteria, fungi, and humans. Bacterial chitinases exhibit environmental stability and serve as infection biomarkers, fungal chitinases excel in immunotherapy and bioactive compound production, and human chitinases, though less explored, show potential in precision diagnostics and inflammatory therapy. Conclusions: This cross-domain comparison maps structural and functional characteristics and opens opportunities for integrating cross-species enzyme functions for innovative enzyme-based biopharmaceuticals and precision therapies addressing modern pathogens
Keywords
Full Text:
PDFReferences
Ali, M. H., Aljadaani, S., Khan, J., Sindi, I., Aboras, M., & Aly, M. M. (2020). Isolation and molecular identification of two chitinase producing bacteria from marine shrimp shell wastes. Pakistan Journal of Biological Sciences, 23(2), 139–149. https://doi.org/10.3923/pjbs.2020.139.149
Anwar, W., Javed, M. A., Shahid, A. A., Nawaz, K., Akhter, A., Ur Rehman, M. Z., Hameed, U., Iftikhar, S., & Haider, M. S. (2019). Chitinase genes from Metarhizium anisopliae for the control of whitefly in cotton. Royal Society Open Science, 6(8). https://doi.org/10.1098/rsos.190412
Bai, Y., Eijsink, V. G. H., Kielak, A. M., van Veen, J. A., & de Boer, W. (2016). Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria. Environmental Microbiology, 18(1), 38–49. https://doi.org/10.1111/1462-2920.12545
Berini, F., Casartelli, M., Montali, A., Reguzzoni, M., Tettamanti, G., & Marinelli, F. (2019). Metagenome-sourced microbial chitinases as potential insecticide proteins. Frontiers in Microbiology, 10(JUN). https://doi.org/10.3389/fmicb.2019.01358
Costa-Barbosa, A., Pacheco, M. I., Carneiro, C., Botelho, C., Gomes, A. C., Real Oliveira, M. E. C. D., Collins, T., Vilanova, M., Pais, C., Correia, A., & Sampaio, P. (2023). Design of a lipid nano-delivery system containing recombinant Candida albicans chitinase 3 as a potential vaccine against fungal infections. Biomedicine and Pharmacotherapy, 166. https://doi.org/10.1016/j.biopha.2023.115362
Dade, C. M., Douzi, B., Cambillau, C., Ball, G., Voulhoux, R., & Forest, K. T. (2022). The crystal structure of CbpD clarifies substrate-specificity motifs in chitin-active lytic polysaccharide monooxygenases. Acta Crystallographica Section D: Structural Biology, 78, 1064–1078. https://doi.org/10.1107/S2059798322007033
Dahiya, D., Pilli, A., Chirra, P. R. R., Sreeramula, V., Mogili, N. V., & Ayothiraman, S. (2022). Morphological and structural characterization of chitin as a substrate for the screening, production, and molecular characterization of chitinase by Bacillus velezensis. Environmental Science and Pollution Research, 29(57), 86550–86561. https://doi.org/10.1007/s11356-022-22166-x
Danişmazoğlu, M., Demir, İ., Sezen, K., Muratoğlu, H., & Nalçacioğlu, R. (2015). Cloning and expression of chitinase A, B, and C (chiA, chiB, chiC) genes from Serratia marcescens originating from Helicoverpa armigera and determining their activities. Turkish Journal of Biology, 39(1), 78–87. https://doi.org/10.3906/biy-1404-31
Devlin, J. R., & Behnsen, J. (2023). Bacterial Chitinases and Their Role in Human Infection. In Infection and Immunity (Vol. 91, Issue 7). American Society for Microbiology. https://doi.org/10.1128/iai.00549-22
Dikbaş, N., Uçar, S., Tozlu, G., Öznülüer Özer, T., & Kotan, R. (2021). Bacterial chitinase biochemical properties, immobilization on zinc oxide (ZnO) nanoparticle and its effect on Sitophilus zeamais as a potential insecticide. World Journal of Microbiology and Biotechnology, 37(10). https://doi.org/10.1007/s11274-021-03138-8
Fadel, F., Zhao, Y., Cousido-Siah, A., Ruiz, F. X., Mitschler, A., & Podjarny, A. (2016). X-Ray crystal structure of the full length human chitotriosidase (CHIT1) reveals features of its chitin binding domain. PLoS ONE, 11(4). https://doi.org/10.1371/journal.pone.0154190
Fennell, T. G., Blackwell, G. A., Thomson, N. R., & Dorman, M. J. (2021). gbpA and chiA genes are not uniformly distributed amongst diverse Vibrio cholerae. Microbial Genomics, 7(6). https://doi.org/10.1099/MGEN.0.000594
Fernando, L. D., Dickwella Widanage, M. C., Penfield, J., Lipton, A. S., Washton, N., Latgé, J. P., Wang, P., Zhang, L., & Wang, T. (2021). Structural Polymorphism of Chitin and Chitosan in Fungal Cell Walls From Solid-State NMR and Principal Component Analysis. Frontiers in Molecular Biosciences, 8. https://doi.org/10.3389/fmolb.2021.727053
Folders, J., Tommassen, J., Van Loon, L. C., & Bitter, W. (2000). Identification of a Chitin-Binding Protein Secreted by Pseudomonas aeruginosa. In JOURNAL OF BACTERIOLOGY (Vol. 182, Issue 5).
Hector, A., Chotirmall, S. H., Lavelle, G. M., Mirković, B., Horan, D., Eichler, L., Mezger, M., Singh, A., Ralhan, A., Berenbrinker, S., Mack, I., Ensenauer, R., Riethmüller, J., Graepler-Mainka, U., Murray, M. A., Griese, M., McElvaney, N. G., & Hartl, D. (2016). Chitinase activation in patients with fungus-associated cystic fibrosis lung disease. Journal of Allergy and Clinical Immunology, 138(4), 1183-1189.e4. https://doi.org/10.1016/j.jaci.2016.01.031
Islam, R., & Datta, B. (2015). Diversity of chitinases and their industrial potential. IJAR, 1(4), 55–60. www.allresearchjournal.com
Jiménez-Ortega, E., Kidibule, P. E., Fernández-Lobato, M., & Sanz-Aparicio, J. (2021). Structural inspection and protein motions modelling of a fungal glycoside hydrolase family 18 chitinase by crystallography depicts a dynamic enzymatic mechanism. Computational and Structural Biotechnology Journal, 19, 5466–5478. https://doi.org/10.1016/j.csbj.2021.09.027
Jiménez-Ortega, E., Kidibule, P. E., Fernández-Lobato, M., & Sanz-Aparicio, J. (2022). Structure–Function Insights into the Fungal Endo-Chitinase Chit33 Depict its Mechanism on Chitinous Material. International Journal of Molecular Sciences, 23(14). https://doi.org/10.3390/ijms23147599
Kaya, M., Lelešius, E., Nagrockaite, R., Sargin, I., Arslan, G., Mol, A., Baran, T., Can, E., & Bitim, B. (2015). Differentiations of Chitin content and surface morphologies of chitins extracted from male and female grasshopper species. PLoS ONE, 10(1). https://doi.org/10.1371/journal.pone.0115531
Khairah, M., Mubarik, N. R., & Manaf, L. A. (2023). Bacterial selection and characterization of chitinase enzyme from bacteria controlling Fusarium proliferatum. Biodiversitas, 24(3), 1926–1933. https://doi.org/10.13057/biodiv/d240370
Kidibule, P. E., Santos-Moriano, P., Plou, F. J., & Fernández-Lobato, M. (2020). Endo-chitinase Chit33 specificity on different chitinolytic materials allows the production of unexplored chitooligosaccharides with antioxidant activity. Biotechnology Reports, 27. https://doi.org/10.1016/j.btre.2020.e00500
Kurç, Ö., Rähse, N., Gohlke, H., & Cramer, J. (2025). Human chitinases and chitinase-like proteins as emerging drug targets - a medicinal chemistry perspective. In RSC Medicinal Chemistry. Royal Society of Chemistry. https://doi.org/10.1039/d4md01050g
Okawa, K., Kijima, M., Ishii, M., Maeda, N., Yasumura, Y., Sakaguchi, M., Kimura, M., Uehara, M., Tabata, E., Bauer, P. O., & Oyama, F. (2025). Hyperactivation of human acidic chitinase (Chia) for potential medical use. Journal of Biological Chemistry, 301(1). https://doi.org/10.1016/j.jbc.2024.108100
Orikoshi, H., Nakayama, S., Miyamoto, K., Hanato, C., Yasuda, M., Inamori, Y., & Tsujibo, H. (2005). Roles of four chitinases (ChiA, ChiB, ChiC, and ChiD) in the chitin degradation system of marine bacterium Alteromonas sp. strain O-7. Applied and Environmental Microbiology, 71(4), 1811–1815. https://doi.org/10.1128/AEM.71.4.1811-1815.2005
Sahu, S., Dhruw, S., Shukla, A., & Kotasthane, A. S. (2024). TRICHODERMA ATROVIRIDE (T14) DERIVED PUTATIVE MUTANTS WITH ENHANCED CHITINASES ABILITY AGAINST RHIZOCTONIA SOLANI. Plant Archives, 25(1). https://doi.org/10.51470/PLANTARCHIVES.2025.v25.supplement-1.204
Sharma, L., Amick, A. K., Vasudevan, S., Lee, S. W., Marion, C. R., Liu, W., Brady, V., Losier, A., Bermejo, S. D., Britto, C. J., Lee, C. G., Elias, J. A., & Dela Cruz, C. S. (2018). Regulation and Role of Chitotriosidase during Lung Infection with Klebsiella pneumoniae . The Journal of Immunology, 201(2), 615–626. https://doi.org/10.4049/jimmunol.1701782
Shinha, T., & Hadi, C. (2015). Clostridium paraputrificum Bacteremia Associated with Colonic Necrosis in a Patient with AIDS . Case Reports in Infectious Diseases, 2015, 1–3. https://doi.org/10.1155/2015/312919
Sinelnikov, I. G., Siedhoff, N. E., Chulkin, A. M., Zorov, I. N., Schwaneberg, U., Davari, M. D., Sinitsyna, O. A., Shcherbakova, L. A., Sinitsyn, A. P., & Rozhkova, A. M. (2021). Expression and Refolding of the Plant Chitinase From Drosera capensis for Applications as a Sustainable and Integrated Pest Management. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.728501
Watanabe, M., Kakizaki, H., Tsukamoto, T., Fujiwara, M., Fukushima, H., Ueda, M., & Matsumiya, M. (2018). Distribution of Chitinolytic Enzyme in the Organs and Molecular Cloning of a Novel Chitinase Gene from the Kidney of Marbled Rockfish <i>Sebastiscus marmoratus</i> Advances in Bioscience and Biotechnology, 09(01), 36–51. https://doi.org/10.4236/abb.2018.91004
Wiesner, D. L., Specht, C. A., Lee, C. K., Smith, K. D., Mukaremera, L., Lee, S. T., Lee, C. G., Elias, J. A., Nielsen, J. N., Boulware, D. R., Bohjanen, P. R., Jenkins, M. K., Levitz, S. M., & Nielsen, K. (2015). Chitin Recognition via Chitotriosidase Promotes Pathologic Type-2 Helper T Cell Responses to Cryptococcal Infection. PLoS Pathogens, 11(3), 1–28. https://doi.org/10.1371/journal.ppat.1004701
Wong, E., Vaaje-Kolstad, G., Ghosh, A., Hurtado-Guerrero, R., Konarev, P. V., Ibrahim, A. F. M., Svergun, D. I., Eijsink, V. G. H., Chatterjee, N. S., & van Aalten, D. M. F. (2012). The Vibrio cholerae colonization factor GbpA possesses a modular structure that governs binding to different host surfaces. PLoS Pathogens, 8(1). https://doi.org/10.1371/journal.ppat.1002373
Wu, Y. L., Wang, S., Yang, D. F., Yang, L. Y., Wang, Q. Y., Yu, J., Li, N., & Pan, L. X. (2022). The Discovery, Enzymatic Characterization and Functional Analysis of a Newly Isolated Chitinase from Marine-Derived Fungus Aspergillus fumigatus df347. Marine Drugs, 20(8). https://doi.org/10.3390/md20080520
Xie, X. H., Fu, X., Yan, X. Y., Peng, W. F., & Kang, L. X. (2021). A broad-specificity chitinase from penicillium oxalicum k10 exhibits antifungal activity and biodegradation properties of chitin. Marine Drugs, 19(7). https://doi.org/10.3390/md19070356
DOI: https://doi.org/10.36987/jpbn.v11i2.7554
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Prima Novitasari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Pembelajaran dan Biologi Nukleus (JPBN) by LPPM Universitas Labuhanbatu is under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY - SA 4.0). Official contact: Rivo +6281362238917