METODE PENGUKURAN RASCH DALAM PEMBELAJARAN FISIKA

Godelfridus Hadung Lamanepa

Abstract


Dalam usaha mengubah paradigma pendekatan penilaian dari classical test theory (CTT)
menjadi item respon theory (IRT), maka penelitian ini berfokus pada estimasi kemampuan
individu (Mahasiswa) menurut pengkuran rasch model. Komponen yang ditinjau yakni
kemampuan mahasiswa dan tingkat kesukaran tiap aitem tes. Metode penelitian ini dilakukan
dengan tes yang diberikan kepada mahasiswa pendidikan fisika semester V, Fakultas
Keguruan dan Ilmu Pendidikan, Universitas Katolik Widya Mandira. Proses analisis dilakukan
dengan mengurutkan kemampuan mahasiswa dan parameter tingkat kesukaran dalam skala
logitnya masing-masing. Hasil analisis menunjukkan bahwa rata-rata kemampuan mahasiswa
dalam mengerjakan tes Optika memiliki logit lebih tinggi yakni (0,76 logit) dari rata-rata logit
kesukaran aitem tes atau mean item (0,00 logit). Analisis ini mampu mengklasifikasikan
kemampuan tiap-tiap individu dan kesulitan aitem-aitem tes dengan lebih tepat.


Full Text:

PDF

References


Arsad, N., Kamal, N., Ayob, A., Sarbani, N., Tsuey, C. S., Misran, N., & Husain, H. (2013).

Rasch model analysis on the effectiveness of early evaluation questions as a benchmark

for new students ability. International Education Studies, 6(6), 185–190.

https://doi.org/10.5539/ies.v6n6p185

Caldwell, D. J., & Pate, A. N. (2013). Effects of question formats on student and item

performance. American Journal of Pharmaceutical Education, 77(4).

https://doi.org/10.5688/ajpe77471

Gugiu, M. R., & Gugiu, P. C. (2013). Utilizing Item Analysis to Improve the Evaluation of Student

Performance. Journal of Political Science Education, 9(3), 345–361.

https://doi.org/10.1080/15512169.2013.796248

Lange, R., Greiff, W. R., Moran, J., Ferro, L., & acl. (2004). A probabilistic Rasch analysis of

question answering evaluations. Hlt-Naacl 2004: Human Language Technology

Conference of the North American Chapter of the Association for Computational

Linguistics, Proceedings of the Main Conference, 65–72.

Lee, Y. J., Palazzo, D. J., Warnakulasooriya, R., & Pritchard, D. E. (2008). Measuring student

learning with item response theory. Physical Review Special Topics - Physics Education

Research, 4(1). https://doi.org/10.1103/PhysRevSTPER.4.010102

Magno, C. (2009). Demonstrating the Difference between Classical Test Theory and Item

Response Theory Using Derived Test Data. The International Journal of Educational and

Psychological Assessment, 1(1), 1–11.

Mahmud, Z., Ghani, N. A. M., & Rahim, R. A. (2013). Assessing Students’ Learning Ability in a

Postgraduate Statistical Course: A Rasch Analysis. Procedia - Social and Behavioral

Sciences, 89, 890–894. https://doi.org/10.1016/j.sbspro.2013.08.951

Nurcahyo, F. A. (2017). Aplikasi IRT dalam Analisis Aitem Tes Kognitif. Buletin Psikologi, 24(2),

–75. https://doi.org/10.22146/buletinpsikologi.25218

O. A., A., & E. R. I., A. (2016). Comparative Analysis of Classical Test Theory and Item

Response Theory Based Item Parameter Estimates of Senior School Certificate

Mathematics Examination. European Scientific Journal, ESJ, 12(28), 263.

https://doi.org/10.19044/esj.2016.v12n28p263

Planinic, M., Boone, W. J., Susac, A., & Ivanjek, L. (2019). Rasch analysis in physics education

research: Why measurement matters. Physical Review Physics Education Research,

(2), 20111. https://doi.org/10.1103/PhysRevPhysEducRes.15.020111

Rashid, R. A., & Abdullah, R. (2008). Application of Rasch-based ESPEGS Model in Measuring

Generic Skills of Engineering Students : A New Paradigm. Advances in Engineering

Education, 5(8), 591–602.

Saidfudin, M., Azrilah, A. A., Rodzo’An, N. A., Omar, M. Z., Zaharim, A., & Basri, H. (2010).

Easier learning outcomes analysis using rasch model in engineering education research.

International Conference on Engineering Education and International Conference on

Education and Educational Technologies - Proceedings, March 2014, 442–447.

Siri, A., & Freddano, M. (2011). The use of item analysis for the improvement of objective

examinations. Procedia - Social and Behavioral Sciences, 29, 188–197.

https://doi.org/10.1016/j.sbspro.2011.11.224

Souza, M. A. P., Coster, W. J., Mancini, M. C., Dutra, F. C. M. S., Kramer, J., & Sampaio, R. F.

(2017). Rasch analysis of the participation scale (P-scale): usefulness of the P-scale to a

rehabilitation services network. BMC Public Health, 17(1), 934.

https://doi.org/10.1186/s12889-017-4945-9

Sumintono, B. (2014). Model Rasch untuk Penelitian Sosial Kuantitatif. Makalah Kuliah Umum

Di Jurusan Statistika, ITS Surabaya, 21 November 2014, November 201, 1–9.

http://deceng3.wordpress.com

Sumintono, B. (2018). Rasch Model Measurements as Tools in Assesment for Learning.

https://doi.org/10.2991/icei-17.2018.11

Zamora-Araya, J. A., Smith-Castro, V., Montero-Rojas, E., & Moreira-Mora, T. E. (2018).

Advantages of the Rasch Model for Analysis and Interpretation of Attitudes: the Case of

the Benevolent Sexism Subscale. Revista Evaluar, 18(3). https://doi.org/10.35670/1667-

v18.n3.22201




DOI: https://doi.org/10.36987/jes.v8i1.1975

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Godelfridus Hadung Lamanepa

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Lisensi Creative Commons
Jurnal Eduscience (JES) by LPPM Universitas Labuhanbatu is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY - NC - SA 4.0)