Influence of Potential Hydrogen (pH) on the Growth of Bacillus cereus IMB-11 during Hydrocarbon Degradation in vitro
Abstract
Keywords
Full Text:
PDFReferences
Adetitun, D. O., Tomilayo, R. B., Oguntoye, M. B., & Raheem, A. A. (2020). Biodegradation of hydrocarbons by Bacillus cereus isolated from indoor and outdoor air of selected hospitals in Ilorin, Kwara State, Nigeria. Journal of Applied Sciences and Environmental Management, 24(6), 985–989. https://doi.org/10.4314/jasem.v24i6.7.
Adipah, S. (2018). Introduction of petroleum hydrocarbons contaminants and its human effects. Journal of Environmental Science and Public Health, 3, 1–9.
Brooijmans, R. J. W., Pastink, M. I., & Siezen, R. J. (2009). Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microbial Biotechnology, 6, 587–594. https://doi.org/10.1111/j.1751-7915.2009.00151.x.
Chauhan, A., Fazlurrahman, Oakeshott, J. G., & Jain, R. K. (2008). Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian Journal of Microbiology, 48, 95–113. https://doi.org/10.1007/s12088-008-0010-9.
Christova, N., Kabaivanova, L., Nacheva, L., Petrov, P., & Stoineva, I. (2019). Biodegradation of crude oil hydrocarbons by a newly isolated biosurfactant producing strain. Biotechnology & Biotechnological Equipment, 33(1), 863–872. https://doi.org/10.1080/13102818.2019.1625725.
Das, N. & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: A Review. Biotechnology Research International, 2011, 941810. https://doi.org/10.4061/2011/941810.
Djahnit, N., Chernai, S., Catania, V., Hamdi, B., China, B., Cappello, S., & Quatrini, P. (2019). Isolation, characterization and determination of biotechnological potential of oil-degrading bacteria from Algerian centre coast. Journal of Applied Microbiology, 126(3), 780–795. https://doi.org/10.1111/jam.14185.
Dvorak, P., Nikel, P. I., Damborsky, J., & de Lorenzo, V. (2017). Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnology Advances, 35(7), 845–866. https://doi.org/10.1016/j.biotechadv.2017.08.001.
El-Naas, M. H., Acio, J. A., & El-Telib, A. E. (2014). Aerobic biodegradation of BTEX: Progresses and reports. Journal of Environmental Chemical Engineering, 2(2), 1104–1122. https://doi.org/10.1016/j.jece.2014.04.009.
Fang, H., Dong, B., Yan, H., Tang, F., & Yu, Y. (2010). Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. Journal of Hazardous Materials, 184(1–3), 281–289. https://doi.org/10.1016/j.jhazmat.2010.08.034.
Hossain, M. F., Akter, A. M., Sohan, M. S. R., Sultana, N., Reza, M. A., & Hoque, K. M. F. (2022). Bioremediation potential of hydrocarbon degrading bacteria: isolation, characterization, and assessment. Saudi Journal of Biological Sciences, 29(1), 211–216. https://doi.org/10.1016/j.sjbs.2021.08.069.
Jin, Q. & Kirk, M. F. (2018). pH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Frontiers in Environmental Science, 6, 21. https://doi.org/10.3389/fenvs.2018.00021.
Krulwich, T. A., Sachs, G., & Padan, E. (2011). Molecular aspects of bacterial pH sensing and homeostasis. Natural Reviews Microbiology, 9(5), 330–343. https://doi.org/10.1038/nrmicro2549.
Leahy, J. G. & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiology Reviews, 54(3), 305–315. https://doi.org/ 10.1128/mr.54.3.305-315.1990.
Napoleon, A. & Probowati, D. S. (2014). Exploration of hydrocarbon degrading bacteria on soils contaminated by crude oil from South Sumatera. Journal of Degraded and Mining Lands Management, 1(4), 201–206. https://doi.org/10.1111/10.15243/jdmlm.2014.014.201.
Qin, X., Tang, J. C., Li, D. S., & Zhang, Q. M. (2012). Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Letters in Applied Microbiology, 55(3), 210–217. https://doi.org/10.1111/j.1472-765X.2012.03280.x.
Sayuti, I., Siregar, Y. I., Amin, B., Agustien, A., & Hartanto, A. (2021). Molecular typing of crude-oil-degrading bacterial strains from Riau, Indonesia. Asia-Pacific Journal of Science and Technology, 25(2), 1–9.
Saxena, P. & Ghosh, C. (2012). A review of assessment of benzene, toluene, ethylbenzene and xylene (BTEX) concentration in urban atmosphere of Delhi. International Journal of the Physical Sciences, 7(6), 850–860. https://doi.org/10.5897/IJPSX11.010.
Surendra, S. V., Mahalingam, B. L., & Velan, M. (2017). Degradation of monoaromatics by Bacillus pumilus MVSV3. Brazilian Archives of Biology and Technology, 60, e17160319. https://doi.org/10.1590/1678-4324-2017160319.
Syafitri, D., Sayuti, I., & Mahadi, M. (2022). Efektifitas rasio nutrien bakteri Bacillus cereus strain IMB-11 dalam mendegradasi pencemaran biosolar sebagai rancangan poster biologi SMA. Jurnal Biogenesis, 18(1), 54–67. https://doi.org/10.31258/biogenesis.18.1.54-67.
Wongbunmak, A., Khiawjan, S., Suphantharika, M., & Pongtharangkul, T. (2020). BTEX biodegradation by Bacillus amyloliquefaciens subsp. plantarum W1 and its proposed BTEX biodegradation pathways. Scientific Reports, 10, 17408. https://doi.org/10.1038/s41598-020-74570-3.
DOI: https://doi.org/10.36987/jpbn.v8i3.3230
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Irda Sayuti, Zulfarina Zulfarina, Teguh Juliantani Widodo
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Jurnal Pembelajaran dan Biologi Nukleus (JPBN) by LPPM Universitas Labuhanbatu is under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY - SA 4.0). Official contact: Rivo +6281362238917