Influence of Potential Hydrogen (pH) on the Growth of Bacillus cereus IMB-11 during Hydrocarbon Degradation in vitro

Irda Sayuti, Zulfarina Zulfarina, Teguh Juliantani Widodo

Abstract


This study aims to determine the pH variation of the growth of Bacillus cereus strain IMB-11 in degrading diesel fuel. The research was conducted in the Laboratory of PMIPA, FKIP, Universitas Riau while total petroleum hydrocarbon (TPH) was measured in the solid residue in the Laboratory of the Faculty of Civil and Environmental Engineering, ITB. This research was conducted in November 2019 – March 2020. The study was designed in a completely randomized design with 3 treatments and 3 replication groups. The media used are SMSS media with the addition of pH 6.5; pH 7.0; and pH 7.5, which was added with diesel fuel as much as 5% and bacterial isolates of Bacillus cereus strain IMB-11. The test parameter was the optical density (OD) of bacterial growth of Bacillus cereus Strain IMB-11 which was monitored using a spectrophotometer for 6 days and the measurement on the level of degradation or TPH diesel fuel using the Gravimetric method. Based on the research, the moderate pH of 7.0 was the best condition for strain growth with an OD of 5.8 with 26.95% of degradation rate of diesel fuel in vitro.

Keywords


Bacillus cereus, biodegradation, diesel fuel, pH

Full Text:

PDF

References


Adetitun, D. O., Tomilayo, R. B., Oguntoye, M. B., & Raheem, A. A. (2020). Biodegradation of hydrocarbons by Bacillus cereus isolated from indoor and outdoor air of selected hospitals in Ilorin, Kwara State, Nigeria. Journal of Applied Sciences and Environmental Management, 24(6), 985–989. https://doi.org/10.4314/jasem.v24i6.7.

Adipah, S. (2018). Introduction of petroleum hydrocarbons contaminants and its human effects. Journal of Environmental Science and Public Health, 3, 1–9.

Brooijmans, R. J. W., Pastink, M. I., & Siezen, R. J. (2009). Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microbial Biotechnology, 6, 587–594. https://doi.org/10.1111/j.1751-7915.2009.00151.x.

Chauhan, A., Fazlurrahman, Oakeshott, J. G., & Jain, R. K. (2008). Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian Journal of Microbiology, 48, 95–113. https://doi.org/10.1007/s12088-008-0010-9.

Christova, N., Kabaivanova, L., Nacheva, L., Petrov, P., & Stoineva, I. (2019). Biodegradation of crude oil hydrocarbons by a newly isolated biosurfactant producing strain. Biotechnology & Biotechnological Equipment, 33(1), 863–872. https://doi.org/10.1080/13102818.2019.1625725.

Das, N. & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: A Review. Biotechnology Research International, 2011, 941810. https://doi.org/10.4061/2011/941810.

Djahnit, N., Chernai, S., Catania, V., Hamdi, B., China, B., Cappello, S., & Quatrini, P. (2019). Isolation, characterization and determination of biotechnological potential of oil-degrading bacteria from Algerian centre coast. Journal of Applied Microbiology, 126(3), 780–795. https://doi.org/10.1111/jam.14185.

Dvorak, P., Nikel, P. I., Damborsky, J., & de Lorenzo, V. (2017). Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnology Advances, 35(7), 845–866. https://doi.org/10.1016/j.biotechadv.2017.08.001.

El-Naas, M. H., Acio, J. A., & El-Telib, A. E. (2014). Aerobic biodegradation of BTEX: Progresses and reports. Journal of Environmental Chemical Engineering, 2(2), 1104–1122. https://doi.org/10.1016/j.jece.2014.04.009.

Fang, H., Dong, B., Yan, H., Tang, F., & Yu, Y. (2010). Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. Journal of Hazardous Materials, 184(1–3), 281–289. https://doi.org/10.1016/j.jhazmat.2010.08.034.

Hossain, M. F., Akter, A. M., Sohan, M. S. R., Sultana, N., Reza, M. A., & Hoque, K. M. F. (2022). Bioremediation potential of hydrocarbon degrading bacteria: isolation, characterization, and assessment. Saudi Journal of Biological Sciences, 29(1), 211–216. https://doi.org/10.1016/j.sjbs.2021.08.069.

Jin, Q. & Kirk, M. F. (2018). pH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Frontiers in Environmental Science, 6, 21. https://doi.org/10.3389/fenvs.2018.00021.

Krulwich, T. A., Sachs, G., & Padan, E. (2011). Molecular aspects of bacterial pH sensing and homeostasis. Natural Reviews Microbiology, 9(5), 330–343. https://doi.org/10.1038/nrmicro2549.

Leahy, J. G. & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiology Reviews, 54(3), 305–315. https://doi.org/ 10.1128/mr.54.3.305-315.1990.

Napoleon, A. & Probowati, D. S. (2014). Exploration of hydrocarbon degrading bacteria on soils contaminated by crude oil from South Sumatera. Journal of Degraded and Mining Lands Management, 1(4), 201–206. https://doi.org/10.1111/10.15243/jdmlm.2014.014.201.

Qin, X., Tang, J. C., Li, D. S., & Zhang, Q. M. (2012). Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Letters in Applied Microbiology, 55(3), 210–217. https://doi.org/10.1111/j.1472-765X.2012.03280.x.

Sayuti, I., Siregar, Y. I., Amin, B., Agustien, A., & Hartanto, A. (2021). Molecular typing of crude-oil-degrading bacterial strains from Riau, Indonesia. Asia-Pacific Journal of Science and Technology, 25(2), 1–9.

Saxena, P. & Ghosh, C. (2012). A review of assessment of benzene, toluene, ethylbenzene and xylene (BTEX) concentration in urban atmosphere of Delhi. International Journal of the Physical Sciences, 7(6), 850–860. https://doi.org/10.5897/IJPSX11.010.

Surendra, S. V., Mahalingam, B. L., & Velan, M. (2017). Degradation of monoaromatics by Bacillus pumilus MVSV3. Brazilian Archives of Biology and Technology, 60, e17160319. https://doi.org/10.1590/1678-4324-2017160319.

Syafitri, D., Sayuti, I., & Mahadi, M. (2022). Efektifitas rasio nutrien bakteri Bacillus cereus strain IMB-11 dalam mendegradasi pencemaran biosolar sebagai rancangan poster biologi SMA. Jurnal Biogenesis, 18(1), 54–67. https://doi.org/10.31258/biogenesis.18.1.54-67.

Wongbunmak, A., Khiawjan, S., Suphantharika, M., & Pongtharangkul, T. (2020). BTEX biodegradation by Bacillus amyloliquefaciens subsp. plantarum W1 and its proposed BTEX biodegradation pathways. Scientific Reports, 10, 17408. https://doi.org/10.1038/s41598-020-74570-3.




DOI: https://doi.org/10.36987/jpbn.v8i3.3230

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Irda Sayuti, Zulfarina Zulfarina, Teguh Juliantani Widodo

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jurnal Pembelajaran dan Biologi Nukleus (JPBN) by LPPM Universitas Labuhanbatu is under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY - SA 4.0). Official contact: Rivo +6281362238917