Influence of LEAP2 (Liver Expressed Antimicrobial Peptide-2) and Ghrelin Binding to GHSR Gene Receptor as Factors Obesity Incidence: A Literature Review
Abstract
Obesity is a serious issue in global health, which requires a more comprehensive understanding for the development of effective therapies. This study explores the role of Liver-Expressed Antimicrobial Peptide 2 (LEAP2) and its interaction with Ghrelin in regulating Growth Hormone Secretagogue Receptor (GHSR) as a potential obesity event. This method used in this review is a systematic literature analysis. The results obtained show that LEAP2, originally known as an antimicrobial, plays a significant role in metabolic regulation and body weight regulation. LEAP2 acts as a Ghrelin antagonist, reduces orexigenic effects and inhibits food intake, and exerts positive effects in tackling the effects of obesity such as hyperlipidemia and inflammation. The study also highlighted the potential of LEAP2 as a therapeutic target in obesity treatment, with palmitoylation modification showing increased stability and effectiveness of LEAP2. However, further understanding and clinical trial studies are needed to validate the preclinical findings and evaluate the long-term effects of LEAP2 regulation on human body weight and metabolic health, thus providing a basis for exploring potential clinical applications in future anti-obesity drug development
Keywords
Full Text:
PDFReferences
Barrile, F., de Francesco, P. N., Cabral, A., García Romero, G., Mustafá, E. R., Cantel, S., Damian, M., Denoyelle, S., Banères, J.-L., Marie, J., Raingo, J., Perelló, M., & Fehrentz, -Jean-Alain. (2019). Development Of A Novel Fluorescent Ligand Of Growth Hormone 1 Secretagogue Receptor Based On The N-Terminal Leap2 Region 2 3. https://www.elsevier.com/open-access/userlicense/1.0/
Bhargava, R., Luur, S., Flores, M. R., Emini, M., Prechtl, C. G., & Goldstone, A. P. (2023). Postprandial Increases in Liver-Gut Hormone LEAP2 Correlate with Attenuated Eating Behavior in Adults Without Obesity. Journal of the Endocrine Society, 7(7). https://doi.org/10.1210/jendso/bvad061
Cornejo, M. P., Castrogiovanni, D., Schiöth, H. B., Reynaldo, M., Marie, J., Fehrentz, J. A., & Perello, M. (2019). Growth hormone secretagogue receptor signalling affects high-fat intake independently of plasma levels of ghrelin and LEAP2, in a 4-day binge eating model. Journal of Neuroendocrinology, 31(10). https://doi.org/10.1111/jne.12785
Friedenreich, C. M., Ryder-Burbidge, C., & McNeil, J. (2021). Physical activity, obesity and sedentary behavior in cancer etiology: epidemiologic evidence and biologic mechanisms. Molecular Oncology,15(3), 790–800). John Wiley and Sons Ltd. https://doi.org/10.1002/1878-0261.12772
Ge, X., Yang, H., Bednarek, M. A., Galon-Tilleman, H., Chen, P., Chen, M., Lichtman, J. S., Wang, Y., Dalmas, O., Yin, Y., Tian, H., Jermutus, L., Grimsby, J., Rondinone, C. M., Konkar, A., & Kaplan, D. D. (2018). LEAP2 Is an Endogenous Antagonist of the Ghrelin Receptor. Cell Metabolism, 27(2), 461-469.e6. https://doi.org/10.1016/j.cmet.2017.10.016
Ghalandari, H., Hosseini-Esfahani, F., & Mirmiran, P. (2015). The association of polymorphisms in leptin/leptin receptor genes and ghrelin/ghrelin receptor genes with overweight/obesity and the related metabolic disturbances: A review. In International Journal of Endocrinology and Metabolism, 13(3). Kowsar Medical Institute. https://doi.org/10.5812/ijem.19073v2
Gupta, D., Dowsett, G. K. C., Mani, B. K., Shankar, K., Osborne-Lawrence, S., Metzger, N. P., Lam, B. Y. H., Yeo, G. S. H., & Zigman, J. M. (2021). High coexpression of the ghrelin and LEAP2 receptor GHSR with pancreatic polypeptide in mouse and human islets. Endocrinology (United States), 162(10). https://doi.org/10.1210/endocr/bqab148
Gupta, D., Ogden, S. B., Shankar, K., Varshney, S., & Zigman, J. M. (2021). “A LEAP 2 conclusions? Targeting the ghrelin system to treat obesity and diabetes.” In Molecular Metabolism (Vol. 46). Elsevier GmbH. https://doi.org/10.1016/j.molmet.2020.101128
Hagemann, C. A., Jensen, M. S., Holm, S., Gasbjerg, L. S., Byberg, S., Skov-Jeppesen, K., Hartmann, B., Holst, J. J., Dela, F., Vilsbøll, T., Christensen, M. B., Holst, B., & Knop, F. K. (2022). LEAP2 reduces postprandial glucose excursions and ad libitum food intake in healthy men. Cell Reports Medicine, 3(4). https://doi.org/10.1016/j.xcrm.2022.100582
Henriques, S. T., Tan, C. C., Craik, D. J., & Clark, R. J. (2010). Structural and functional analysis of human liver-expressed antimicrobial peptide 2.
ChemBioChem, 11(15), 2148–2157. https://doi.org/10.1002/cbic.201000400
Holá, L., Železná, B., Karnošová, A., Kuneš, J., Fehrentz, J. A., Denoyelle, S., Cantel, S., Blechova, M., Sykora, D., Myskova, A., & Maletinska, L. (2022). A Novel Truncated Liver Enriched Antimicrobial Peptide-2 Palmitoylated at its N-Terminal Antagonizes Effects of Ghrelin. Journal of Pharmacology and Experimental Therapeutics, 383(2), 129–136. https://doi.org/10.1124/jpet.122.001322
Holm, S., Anna Sofie Husted, Louise Julie Skov, & Morville, T. (2022). Beta-Hydroxybutyrate Suppresses Hepatic Production of the Ghrelin Receptor Antagonist LEAP2. Endocrinology.
Howick, K., Griffin, B. T., Cryan, J. F., & Schellekens, H. (2017). From belly to brain: Targeting the ghrelin receptor in appetite and food intake regulation. International Journal of Molecular Sciences, 18(2). MDPI AG. https://doi.org/10.3390/ijms18020273
Lang, Y., Liu, Y., Ye, C., Tang, X., Cheng, Z., Xie, L., & Liu, Y. (2023). Loss of LEAP-2 alleviates obesity-induced myocardial injury by regulating macrophage polarization. Experimental Cell Research.
Lee, J. H., Lin, L., Ye, X., Wolfrum, C., Chen, Y., Guo, S., & Sun, Y. (2021). GHS-R in brown fat potentiates differential thermogenic responses under metabolic and thermal stresses. PLoS ONE, 16(4). https://doi.org/10.1371/journal.pone.0249420
Li, H.-Z., Shao, X.-X., Wang, Y.-F., Liu, Y.-L., Xu, Z.-G., Guo, Z.-Y., & Guo, Z.-Y. (2023). LEAP2 is a more conserved ligand than ghrelin for fish GHSRs. https://doi.org/10.1101/2022.09.21.508860
Lu, X., Huang, L., Huang, Z., Feng, D., Clark, R. J., & Chen, C. (2021). LEAP-2: An Emerging Endogenous Ghrelin Receptor Antagonist in the Pathophysiology of Obesity. Frontiers in Endocrinology, 12, Frontiers Media S.A. https://doi.org/10.3389/fendo.2021.717544
Lugilde, J., Casado, S., Beiroa, D., Cuñarro, J., Garcia-Lavandeira, M., Álvarez, C. v., Nogueiras, R., Diéguez, C., & Tovar, S. (2022). LEAP-2 Counteracts Ghrelin-Induced Food Intake in a NutrientGrowth Hormone and Age Independent Manner. Cells, 11(3). https://doi.org/10.3390/cells11030324
Luglio, H., Inggriyani, C., Beiroa, D., Cuñarro, J., Clara, V. Á., Di, C., & Tovar, S. (2014). Association of SNPs in GHSR rs292216 and rs509035 on dietary intake in Indonesian obese female adolescents.
Mani, B. K., Puzziferri, N., He, Z., Rodriguez, J. A., Osborne-Lawrence, S., Metzger, N. P., Chhina, N., Gaylinn, B., Thorner, M. O., Louise Thomas, E., Bell, J. D., Williams, K. W., Goldstone, A. P., & Zigman, J. M. (2019). LEAP2 changes with body mass and food intake in humans and mice. Journal of Clinical Investigation, 129(9), 3909–3923. https://doi.org/10.1172/JCI125332
Ministry of Health of the Republic of Indonesia. (2018). Basic Health Research Results 2018. https://layanandata.kemkes.go.id/katalog-data/riskesdas/ketersediaan-data/riskesdas-2018
M’Kadmi, C., Cabral, A., Barrile, F., Giribaldi, J., Cantel, S., Damian, M., Mary, S., Denoyelle, S., Dutertre, S., Péraldi-Roux, S., Neasta, J., Oiry, C., Banères, J. L., Marie, J., Perello, M., & Fehrentz, J. A. (2019). N-Terminal Liver-Expressed Antimicrobial Peptide 2 (LEAP2) Region Exhibits Inverse Agonist Activity toward the Ghrelin Receptor. Journal of Medicinal Chemistry, 62(2), 965–973. https://doi.org/10.1021/acs.jmedchem.8b01644
Mustafá, E. R., Cordisco González, S., Damian, M., Cantel, S., Denoyelle, S., Wagner, R., Schiöth, H. B., Fehrentz, J. A., Banères, J. L., Perelló, M., & Raingo, J. (2021). LEAP2 Impairs the Capability of the Growth Hormone Secretagogue Receptor to Regulate the Dopamine 2 Receptor Signaling. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.712437
Nabekura, H., Islam, M. N., Sakoda, H., Yamaguchi, T., Saiki, A., Nabekura, T., Oshiro, T., Tanaka, Y., Murayama, S., Zhang, W., Tatsuno, I., & Nakazato, M. (2023). Liver-Expressed Antimicrobial Peptide 2 Is a Hepatokine That Predicts Weight Loss and Complete Remission of Type 2 Diabetes Mellitus after Vertical Sleeve Gastrectomy in Japanese Individuals. Obesity Facts, 16(4), 392–400. https://doi.org/10.1159/000530733
Palumbo, F., Draga, S., Vannozzi, A., Lucchin, M., & Barcaccia, G. (2022). Trends in Apomixis Research: The 10 Most Cited Research Articles Published in the Pregenomic and Genomic Eras. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.878074
Perelló, M., Dickson, S. L., Zigman, J. M., & Leggio, L. (2023). Toward a consensus nomenclature for ghrelin, its non-acylated form, liver expressed antimicrobial peptide 2 and growth hormone secretagogue receptor. In Journal of Neuroendocrinology, 35(1). John Wiley and Sons Inc. https://doi.org/10.1111/jne.13224
Pradhan, G., Samson, S. L., & Sun, Y. (n.d.). Ghrelin: much more than a hunger hormone. https://doi.org/10.1097/MCO
Ribeiro, L. F., Catarino, T., Carvalho, M., Cortes, L., Santos, S. D., Opazo, P. O., Rosenbrier Ribeiro, L., Oliveiros, B., Choquet, D., Esteban, J. A., Peça, J., & Luísa Carvalho, A. (2021). Ligand independent activity of the ghrelin receptor modulates AMPA receptor trafficking and supports memory formation. Science Signal, 14.
Shankar, K., Metzger, N. P., Singh, O., Mani, B. K., Osborne-Lawrence, S., Varshney, S., Gupta, D., Ogden, S. B., Takemi, S., Richard, C. P., Nandy, K., Liu, C., & Zigman, J. M. (2021). LEAP2 deletion in mice enhances ghrelin’s actions as an orexigen and growth hormone secretagogue. Molecular Metabolism, 53. https://doi.org/10.1016/j.molmet.2021.101327
Siddaway, A. P., Wood, A. M., & Hedges, L. v. (2018). How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. https://doi.org/10.1146/annurev-psych-010418
Stoyanova, I., & Lutz, D. (2021). Ghrelin-Mediated Regeneration and Plasticity After Nervous System Injury. In Frontiers in Cell and Developmental Biology, 9. Frontiers Media S.A. https://doi.org/10.3389/fcell.2021.595914
Varimo, T., Miettinen, P. J., Vaaralahti, K., Toppari, J., & Huopio, H. (2022). Circulating Liver-enriched Antimicrobial Peptide-2 Decreases during Male Puberty. Journal of the Endocrine Society, 6(3), 1332–1345.
Wang, J. H., Li, H. Z., Shao, X. X., Nie, W. H., Liu, Y. L., Xu, Z. G., & Guo, Z. Y. (2019). Identifying the binding mechanism of LEAP2 to receptor GHSR1a. FEBS Journal, 286(7), 1332–1345. https://doi.org/10.1111/febs.14763
Wellman, M., & Abizaid, A. (2015). Growth hormone secretagogue receptor dimers: A new pharmacological target. In eNeuro (Vol. 2, Issue 2). Society for Neuroscience. https://doi.org/10.1523/ENEURO.0053-14.2015
World Health Organization (WHO). (2020, February 21). Obesity. : https://www.who.int/health-topics/obesity#tab=tab_1
Yin, Y., Li, Y., & Zhang, W. (2014). The growth hormone secretagogue receptor: Its intracellular signaling and regulation. In International Journal of Molecular Sciences (Vol. 15, Issue 3, pp. 4837–4855). MDPI AG. https://doi.org/10.3390/ijms15034837
DOI: https://doi.org/10.36987/jpbn.v10i3.5834
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Asman Hitopik; Ahsanal Kasasiah; Jekmal Malau
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Pembelajaran dan Biologi Nukleus (JPBN) by LPPM Universitas Labuhanbatu is under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY - SA 4.0). Official contact: Rivo +6281362238917