PVA/Chitosan Hydrogel with Piper betle Extract: Waterproof Design, Exudate Management, and Antibacterial Efficacy Against Staphylococcus aureus & Escherichia coli

Manuppak Irianto Tampubolon, Natanael Priltius, Adiansyah Adiansyah

Abstract


Background: Injuries represent a major health concern in Indonesia, with the national health survey in 2022 reporting ~9% prevalence. In 2023, >146,000 traffic accident injuries and >370,000 occupational accidents were recorded, highlighting the urgent need for affordable and effective wound care solutions, particularly in underserved areas. Methods: Polyvinyl alcohol (PVA)–chitosan hydrogels were prepared via freeze–thaw crosslinking, incorporating Piper betle extract at 0.5%, 1%, and 2% w/w (F1–F3) alongside a control (F0). Physicochemical characterization included Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), swelling ratio, mechanical strength, water vapor transmission rate, and water resistance. Biological performance was assessed through antimicrobial testing (Staphylococcus aureus, Escherichia coli), fibroblast cytocompatibility assays, and in vitro release studies. Each assay was conducted in triplicate (n ≥ 3), and statistical analyses applied repeated-measures ANOVA or Friedman test (p < 0.05). Results: Hydrogels exhibited waterproof integrity and high exudate absorption (>400%), maintaining a moist wound environment. Antimicrobial assays showed clear inhibition zones (~15 mm) in Piper betle –loaded formulations, significantly greater than F0. Fibroblast viability exceeded 85%, confirming good cytocompatibility. In vitro release profiles demonstrated sustained bioactive release consistent with the Higuchi model. The combination of PVA–chitosan matrix and Piper betle extract produced hydrogels with stable physicochemical properties, controlled release kinetics, and potent antimicrobial activity, while remaining biocompatible.  Contributions: These findings support the potential of PVA–chitosan/Piper betle hydrogels as cost-effective wound dressings. Their clinical applicability is particularly relevant in rural and resource-limited healthcare settings in Indonesia, where the burden of injury and demand for accessible wound care products remain high


Keywords


Natural-Based Materials; Piper betle Extract; Polyvinyl alcohol (PVA); Wound Dressing; Wound Healing

References


Aguirre-loredo, R. Y., & Rodríguez-hernández, A. I. (2014). Physical properties of emulsified films based on chitosan and oleic acid. CyTA – Journal of Food, 12(4), 305–312. https://doi.org/10.1080/19476337.2013.853207

Ahmed, A. A., Nada, A. A., Ibrahim, A. Y., Sajkiewicz, P., Zahran, M. K., & Hakeim, O. A. (2021). Preparation and characterization of smart therapeutic pH-sensitive wound dressing from red cabbage extract and chitosan hydrogel. International Journal of Biological Macromolecules, 182, 1820–1831. https://doi.org/10.1016/j.ijbiomac.2021.05.167

Akbar, A., Khodaiyan, F., & Atai, E. (2013). Development and characterisation of composite films made of kefiran and starch. Food Chemistry, 136(3–4), 1231–1238. https://doi.org/10.1016/j.foodchem.2012.08.073

Ali, A., Hossain, M. F., Bhuiyan, M. A. R., Mohebbullah, M., Khan, N. M. M. U., & Wang, L. (2024). Coaxial electrospun PVA-SAP functional nanofibers embedded with betel leaf extract for enhanced germicidal activity and breathability. Industrial Crops and Products, 213(April), 118428. https://doi.org/10.1016/j.indcrop.2024.118428

Arambewela, L. S. R., Kumaratunga, K. G. A., Kumarasingha, S. P., & Dissanayake, D. S. (2020). Studies on Piper betle of Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 33(2), 133–139. https://doi.org/10.4038/jnsfsr.v33i2.2343.

Boateng, J. S., Matthews, K. H., Stevens, H. N. E., & Eccleston, G. M. (2008). Wound-healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Sciences, 97(8), 2892–2923. https://doi.org/10.1002/jps.21210.

Cano, A., Cháfer, M., Chiralt, A., & González-Martínez, C. (2016). Physical and antimicrobial properties of starch-PVA blend films as affected by the incorporation of natural antimicrobial agents. Foods, 5(1), 3. https://doi.org/10.3390/foods5010003

Chen, Y., Xu, J., Li, X., Shen, L., & Zhang, C. (2020). Plant polyphenol-loaded hydrogels for biomedical applications. Journal of Materials Chemistry B, 8(17), 3437–3459. https://doi.org/10.1039/D0TB00265E

Gallo, J. A. Q., & Amaro, M. R. D. (2003). Application of Edible Coatings to Improve Shelf-life of Mexican Guava. 589–594.

Hartatiek, et al. (2023). Mechanical, degradation rate, and antibacterial properties of a collagen-chitosan/PVA composite nanofiber. Materials Research Express, 10(2), 025401. https://doi.org/10.1088/2053-1591/acb990

Islam, F., Rahman, E., Tarannum, T., & Islam, N. (2024). Assessment of chitosan-PVA hydrogels infused with marine collagen peptides for potential wound healing applications. Composites Part C: Open Access, 15(October), 100528. https://doi.org/10.1016/j.jcomc.2024.100528

Jallab, M., Ghaheri, M., Javan, B., Erfani-moghadam, V., & Ghaffari, M. (2025). Journal of Industrial and Engineering Chemistry Synthesis and Comprehensive Characterization of PVA / Chitosan / Cu Nanowires Wound Dressing Hydrogel for Effective In Vitro Wound Healing. 146(November 2024), 441–455.

Kong, Q., et al. (2022). Development of a microenvironment-responsive hydrogel promoting chronically infected diabetic wound healing through sequential hemostatic, antibacterial, and angiogenic activities. ACS Applied Materials & Interfaces, 14(27), 30480-30492. https://doi.org/10.1021/acsami.2c02725

Kumar, P. T. S., Lakshmanan, V. K., Anilkumar, T. V., Ramya, C., Reshmi, P., Unnikrishnan, A. G., Nair, S. V., & Jayakumar, R. (2021). Recent advances in bioactive wound dressings for chronic wound management. Materials Science and Engineering: C, 127, 112199. https://doi.org/10.1016/j.msec.2021.112199

Lagos, M. J. B. (2013). Development of bioactive edible films and coatings with antioxidant and antimicrobial properties for food use (Doctoral dissertation, Universitat Politècnica de València; 397 pp.). Riunet — Institutional Repository. Retrieved from https://riunet.upv.es/server/api/core/bitstreams/4655770c-3f23-4482-8beb-c63e4d4be9d8/content.

Ma, T., Yan, L., Wang, B., Gong, Q., Wang, G., Chen, T., Liu, S., Wei, H., He, G., Zhang, Y., Fan, L., & Chu, Y. (2024). Preparation and composition analysis of PVA/chitosan/PDA hybrid bioactive multifunctional hydrogel for wound dressing. European Polymer Journal, 221(September), 113527. https://doi.org/10.1016/j.eurpolymj.2024.113527

Miriam, L. R. J., Kumar, R. P. A., Jose, P. J. M., & Kings, A. J. (2024). Amine functionalised graphene embedded polyvinyl alcohol (PVA) and PVA-chitosan hydrogel composites. International Journal of Biological Macromolecules, 267(P2), 131497. https://doi.org/10.1016/j.ijbiomac.2024.131497

Nalina, T., & Rahim, Z. H. A. (2021). The crude aqueous extract of Piper betle L. and its antibacterial effect towards Streptococcus mutans. American Journal of Biochemistry and Biotechnology, 3(1), 10–15. https://doi.org/10.3844/ajbbsp.2007.10.15.

Panaitescu, D. M., Frone, A. N., Ghiurea, M., & Chiulan, I. (2015). Influence of storage conditions on starch / PVA films containing cellulose nanofibers. Industrial Crops & Products, 70, 170–177. https://doi.org/10.1016/j.indcrop.2015.03.028

Tang, Y., Xu, H., Wang, X., et al. (2023). Advances in preparation and application of antibacterial hydrogels. Journal of Nanobiotechnology, 21, 300. https://doi.org/10.1186/s12951-023-02025-8

Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 41(2), 164–171. https://doi.org/10.1016/j.postharvbio.2006.03.016

Wang, T., Xu, B., Yu, T., Yu, Y., Fu, J., Wang, Y., Gao, X., Xue, Z., Li, R., & Chang, G. (2025). PVA / chitosan-based multifunctional hydrogels constructed through multi-bonding synergies and their application in flexible sensors. Carbohydrate Polymers, 350(November 2024), 123034. https://doi.org/10.1016/j.carbpol.2024.123034

Xu, B., Zhang, Y., Li, J., Wang, B., & Li, R. (2025). International Journal of Biological Macromolecules Self-healing PVA / Chitosan / MXene triple network hydrogel for strain and temperature sensors. International Journal of Biological Macromolecules, 290(December 2024), 138811. https://doi.org/10.1016/j.ijbiomac.2024.138811

Yasin, T., Zafar, M. S., Khan, M. U. A., et al. (2025). Composite hydrogels from carrageenan-cl-carboxymethyl chitosan–PVA incorporated ZIF-8 as dressing material for wound healing applications. Polymer Bulletin, 82, 7893–7915. https://doi.org/10.1007/s00289-025-05827-y

Zhao, Y., Wang, X., Qi, R., & Yuan, H. (2023). Recent advances of natural-polymer-based hydrogels for wound antibacterial therapeutics. Polymers, 15(15), 3305. https://doi.org/10.3390/polym15153305

Zhang, K., Liu, L., Li, N., Junjie, S., Yang, C., Changzhao, L., Yang, X., Sun, W., Cui, S., Sun, Y., Li, J., Yang, Y., & Qiu, J. (2024). Industrial Crops & Products Supramolecular cross-linking affords superelastic and fatigue-resistant cellulose-based nanocomposites with excellent thermomechanical properties and waterproofing performance. Industrial Crops & Products, 218(February), 118936. https://doi.org/10.1016/j.indcrop.2024.118936

Zhang, N., Zhang, X., Zhu, Y., Wang, D., Liu, W., Chen, D., Li, R., & Li, S. (2024). MOF/MXene-loaded PVA/chitosan hydrogel with antimicrobial effect and wound healing promotion under electrical stimulation and improved mechanical properties. International Journal of Biological Macromolecules, 264(P2), 130625. https://doi.org/10.1016/j.ijbiomac.2024.130625

Zhang, X., Li, R., Li, S., Cui, W., Wang, D., Zhu, Y., Liu, Z., Hou, Y., & Lee, S. (2025). International Journal of Biological Macromolecules Tri-network PVA / chitosan / gelatin hydrogel modified by tannic acid with self-healing , adhesive and anti-inflammatory properties to accelerate wound healing. International Journal of Biological Macromolecules, 308(P3), 142280. https://doi.org/10.1016/j.ijbiomac.2025.142280




DOI: https://doi.org/10.36987/jpbn.v11i3.7908

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Manuppak Irianto Tampubolon, Natanael Priltius, Adiansyah Adiansyah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jurnal Pembelajaran dan Biologi Nukleus (JPBN) by LPPM Universitas Labuhanbatu is under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY - SA 4.0). Official contact: Rivo +6281362238917