Endophytic Fungi as A Symbion in Polianthes tuberosa L.: Identification, Microscopic Observation, and Secondary Metabolite Analysis
Abstract
Background: Polianthes tuberosa L. was known as an ornamental plants. People use this plant flower for ritual purpose because of the fragrant aroma. This plant rarely attacked by microorganism and usually stay healthy. Some endophytic fungi species live with P. tuberosaL. plant in mutualistic symbiosis interaction. This study was conducted to: (1) determine where the hyphae of endophytic fungi are located within the tissue of P. tuberosa L. plant petals and leaves, using findings from microscopic observations; (2) identify the species of endophytic fungi residing in the flower petals and leaves of P. tuberosa L.; and (3) ascertain the various secondary metabolites produced by each species of endophytic fungi. Methodology: P. tuberosa plant were obtained from flower market at Malang city. The leaves and flower petal parts were prepared for microscopic observation and identification. Cultures of each endophytic fungal species were grown on PDA plate medium, then cut into pieces measuring 5 x 1 cm and inoculated in PDB medium. These were shaken at a speed of 120 rpm for 7 days. After that, the liquid culture was centrifuged at 3000 rpm for 10 minutes. The contents of several secondary metabolites uses the supernatant of the liquid culture. The phytochemical analysis used spectrophotometry method. Findings: The study findings are: (1) the endophytic fungi hyphae are located in stomata neighbor cells, the walls of xylem cells, epidermal cell walls, sponsa cell walls, and also within the petal epidermis cell walls of the flower; (2) eight endophytic fungi species have been identified; (3) every species of endophytic fungi generates flavonoids, alkaloids, tannins, saponins, and steroids, each with varying content levels. Contribution: Based on this research result, the endophytic fungi culture can be utilized as natural antibiotic source for better synthetic substitution. Besides that endophytic fungi also can be applied as antagonistic fungi to inhibite pathogenic fungi growth that attack some cultivated plant through appropriate research
Keywords
Full Text:
PDFReferences
Alam, B., Lǐ, J., Gě, Q., Khan, M. A., Gōng, J., Mehmood, S., Yuan, Y. & Gǒng, W. (2021). Endophytic fungi: from symbiosis to secondary metabolite communications or vice versa?. Frontiers in Plant Science, 12, 791033.
Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2018). Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. Journal of Applied Research on Medicinal and Aromatic Plants, 11, 12-17. https://doi.org/10.1016/j.jarmap.2018.07.003
Ariani, S. R. D., Mitsalina, A. V., Wathon, M. H. (2024). Chemical Composition and Antibacterial Activity of Plumeria alba L., Polianthes tuberosa L., and Cananga ordorata L. Flowers Essential Oils as Bioadditives in Transparent Solid Bath Soap. Molekul, 19(3), 463-479. https://doi.org/10.20884/1.jm.2024.19.3.10280
Arpitha, T. K., Kalpashree, M. M., Chandan, G. R., Krishna. (2022). Isolation and Identification of Endophytic Fungi from Leaves, Stem and Flower of Clerodendrum thomsoniae Balf. F. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10(11), 448-453.
Barnett, H.L. and Hunter, B.B. (1972). Illustrated Genera of Imperfect Fungi. 3rd Edition, Minneapolis: Burgess Publishing Co.
Bhardwaj, M.; Kailoo, S.; Khan, R.T.; Khan, S.S.; Rasool, S. (2023). Harnessing fungal endophytes for natural management: A biocontrol perspective. Front. Microbiol., 14, 1280258. https://doi.org/10.3389/fmicb.2023.1280258
Clay, K., & Schardl, C. (2002). Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. The American Naturalist, 160(S4), S99-S127.
Ezeabara, C. A., Okeke, C. U., Aziagba, B. O., Ilodibia, C. V., & Emeka, A. N. (2014). Determination of saponin content of various parts of six Citrus species. International Research Journal of Pure and Applied Chemistry, 4(1), 137.
Fuchs, B.; Krauss, J. (2019). Can Epichloë endophytes enhance direct and indirect plant defence?. Fungal Ecol., 38, 98–103. https://doi.org/10.1016/j.funeco.2018.07.002
Gangadewi V & Muthumary J. (2008). Isolation of Colletotrichum gloeosporioides, a moved endophytictaxol-producing fungus from the leaves of a medicinal plant, justicia gendarussa. Mycologia Balcanica, 5, 1-4.
Gao, F., Cuan-chao, D. & Xiao-zhe, L. (2010). Mechanism of Fungal Endhophytic in Plant Protection Against Pathogens. Afric. J. Microbiol. Res 4 (13). 1346-1351
Hakim, S. S., & Yuwiyati, T. W. (2020). The Use of Fungal Endophyte Penicillium citrinum on tree seedling:applicability and limittation. Bio Web Conf. 20, 03005. Https://doi.org./10.1051/bioconf/20202003005
Hastuti, U. S., Asna, P. M. A., & Rahmawati, D. (2018). Histologic observation, identification, and secondary metabolites analysis of endophytic fungi isolated from a medicinal plant, Hedychium acuminatum Roscoe. AIP Conference Proceedings 2002(1), 1-8.
Hastuti, U. S., Rahmawati, D., & Sari, R. Y. (2019). Histologic observation, identification and secondary metabolites analysis of endophytic fungi isolated from Cananga odorata (Lam.) Hook. F. & Thomson. IOP Conference Series: Materials Science and Engineering, 546(2), 1-8.
Hastuti, U. S., Sulisetijono, S., Rahmawati, D., Sari, R. Y., Hartono, S., Thoyibah, C., & Pratiwi, S. H. (2021). Identification and Histological Observation of Endophytic Fungi Isolated from Medicinal Plant, Physalis angulata L. Hayati Journal of Biosciences, 28(2), 130-130.
Hastuti, U. S., Sulisetijono, S., Zahida, N. S., Labibah, S. B., Abdini, A., Pratama, A. W., & Arlan, L. (2024). Endophytic fungi: isolated from Cosmos caudatus Kunth and Cosmos sulphureus Cav.: a histologic observation, identification, and secondary metabolites chemical analysis. IOP Conference Series: Earth and Environmental Science, 1312(1), 1-10.
Hastuti, U. S., Sulisetijono, S., Khotimah, K., Abdini, A., & Lorenzia, F. (2024). Endophytic fungi isolated from yellow champaca (Michelia champaca L.) plant: A histological observation, identification, and secondary metabolite analysis. AIP Conference Proceedings, 3098, (1), 1-15. https://doi.org/10.1063/12.0026213
Javed, J., Rauf, M., Arif, M., Hamayun, M., Gul, H., Ud-Din, A., Ud-Din, J., Sohail, M., Rahman, M. M., & Lee, I. J. (2022). Endophytic Fungal Consortia Enhance Basal Drought-Tolerance in Moringa oleifera by Upregulating the Antioxidant Enzyme (APX) through Heat Shock Factors. Antioxidants (Basel). 11(9):1669. doi: 10.3390/antiox11091669. PMID: 36139743; PMCID: PMC9495891.
Kogel, K. H., Franken, P., & Hückelhoven, R. (2006). Endophyte or parasite–what decides?. Current opinion in plant biology, 9(4), 358-363. https://doi.org/10.1016/j.pbi.2006.05.001
Latz, M. A., Jensen, B., Collinge, D. B., & Jørgensen, H. J. (2018). Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecology & Diversity, 11(5-6), 555-567.
Leon, I. P & Montesano, M. (2013). Activation of Defense Mechanism Against Pathogens in Mosses and Flowering Plants. Internatinal Journal of Molekuler Sciense, 14, 3178-3200
Maiti, S. & Mitra A. (2017). Morphological, Physiological and Ultrastructural Changes in Flowers Explain the Spatio-Temporal Emission of Scent Volatiles in Polianthes tuberosa L. Plant & Cell Physiol, 58(12), 2095-2111. doi:10.1093/pcp/pcx143
Morales-Vargas, A. T., López-Ramírez, V., Álvarez-Mejía, C., & Vázquez-Martínez, J. (2024). Endophytic Fungi for Crops Adaptation to Abiotic Stresses. Microorganisms, 12(7), 1357. https://doi.org/10.3390/microorganisms12071357
Pharmaguideline. (2011). Determination of assay of steroids. Pharmaguideline., https://www.pharmaguideline.com/2011/05/determination-of-assay-of-steroid.html. Retrieved June 16Th 2025
Paryati, S. P. Y., Buana A., Rachmatullah, A. (2022). The Anti-Acne Potential of Tuberose (Polianthes tuberosa L.) in Inhibiting the Growth of Propionibacterium acnes In Vitro. Medika Kartika : Jurnal Kedokteran dan Kesehatan, 5(2), 127-137. [In Indonesian language]
Pitt, John I and Hocking, Alisa D. (1985). Fungi and Food Spoilage. Tokyo: Academic Press
Putri, N. W. P. C. A, Harsojuwono, A. B., Sadyasmara, B. A. C. (2020). Distribution and Post-Harvest Improvement of Cut Flowers of Tuberose (Polianthes tuberosa) from Farmers in Tunjuk Village, Tabanan to Denpasar. Jurnal Rekayasa dan Manajemen Agroindustri, 8(2), 301-309. [In Indonesian language]
Rahmatullah, R. N., Jannat, K., Islam, M., Rahman, T., Jahan, R., & Rahmatullah, M. (2019). A short review of Polianthes tuberosa L. considered a medicinal plant in Bangladesh. Journal of Medicinal Plants Studies, 7(1), 1-3.
Rohibni, R., Fuat, F., Aidin, A., Indrianis, Y., Yolanda, A. T., Jannah, H. I., ... & Yasmin, Y. (2023). Improving the Welfare of the Community in Rembang Village, Pasuruan Regency, Through the Integrated Sociopreneur Sedap Malam (Polianthes tuberose) Programme to Realise a Sustainable Advanced Village. Jurnal Pengabdian Pada Masyarakat, 8(3), 784-802. [In Indonesian language]
Rosana, Y., Matsuzawa, T., Gonoi, T., & Karuniawati, A. (2014). Modified Slide Culture Method for Faster and Easier Identification of Dermatophytes. Microbiology Indonesia, 8(3), 135-139. DOI:10.5454/mi.8.3.7
Samson, R. A., Hoekstra, E.S, Van Oorschot, C.A.N. (1984). Introduction to Food Borne Fungi. Netherlands: Centraalbureau voor Schimmelcultures
Santra, H. K., & Banerjee, D. (2022). Bioactivity study and metabolic profiling of Colletotrichum alatae LCS1, an endophyte of club moss Lycopodium clavatum L. PloS one, 17(4), e0267302.
Sari, K., Dewi, V. K., Wulandari, A. P., Rossiana, N., Herlina, T., & Widiantini, F. (2023). Metabolites Profiling of Penicillium citrinum Recovered from Endophytic of Ramie (Boehmeria nivea) as a Potential Biocontrol Against Pathogenic Fungi. Hayati Journal of Biosciences, 30(2), 246-255.
Setiani, N. A., Aulifa, D. L., & Septiningsih, E. (2020). Phytochemical screening and antibacterial activity of flower, stem, and tuber of Polianthes tuberosa L. against acne-inducing bacteria. In 2nd Bakti Tunas Husada-Health Science International Conference (BTH-HSIC 2019), 92-95). Atlantis Press.
Sofiya, Joy, S. , Mathias, A., & Shivashankar, M. (2021). Evaluation of Antibacterial Activity of the Endophytic Fungi Isolated from Spice Plants. International Journal of Botany Studies, 6(2), 213-219.
Sundar, R. D. V., & Arunachalam, S. (2024). Xenomyrothecium tongaense PTS8: a rare endophyte of Polianthes tuberosa with salient antagonism against multidrug-resistant pathogens. Frontiers in Microbiology, 15, 1327190.
Tambe, V. D., & Bhambar, R. S. (2014). Estimation of total phenol, tannin, alkaloid and flavonoid in Hibiscus tiliaceus Linn. wood extracts. Journal of pharmacognosy and phytochemistry, 2(4), 41-47.
Triastuti, A. (2020). Fungal Endophytes as the source of medicinal natural product. J. Ilm. Farmasi. 16(1), 52-73. http://doi.org/10.20885/jif.vol16.iss1.art6
Wang, X., Wang, B., Liu, L., Chen, J., Cui, X., Jiang, H. Peng, D. (2011). First Report of Anthracnose on Boehmeria nivea caused by collectotrichum higginsianum in China. Plant Dis, 95, 1318. https://doi.org/10.1094/PDIS-04-11-0356. PMID: 30731673
Wang, X.; Xiao, H.; Pang, L.; Wang, F. (2024). Fungal Hyphae on the Assimilation Branches Are Beneficial for Haloxylon ammodendron to Absorb Atmospheric Water Vapor: Adapting to an Extreme Drought Environment. Plants, 13, 1233. https://doi.org/ 10.3390/plants13091233
DOI: https://doi.org/10.36987/jpbn.v11i3.7928
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Utami Sri Hastuti, Aulia Abdini, Dela Reni Puspitasari, Rodiah Amin Hamidah, Sylvana Bilqis Labibah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Pembelajaran dan Biologi Nukleus (JPBN) by LPPM Universitas Labuhanbatu is under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY - SA 4.0). Official contact: Rivo +6281362238917