Phytopharmaceutical Approach in the Development of Red Ginger (Zingiber officinale var. rubrum) Ointment for Inflammation and Pain Management

Raissa Fitri, Grace Anastasia Br Ginting, Fanny Asdian, Destina Karinia Siahaan, Sulistia Nurfadilla, Adiansyah Adiansyah

Abstract


Background: Red ginger (Zingiber officinale var. rubrum) is a variant of Z. officinale distinguished by its elevated levels of phenolic compounds—particularly gingerols, shogaols, and zingerone—that exhibit potent anti-inflammatory and analgesic effects. Topical formulations enable localized drug delivery, reducing systemic exposure and minimizing adverse effects commonly associated with oral nonsteroidal anti-inflammatory drugs (NSAIDs). Methodology: Dried red ginger rhizomes were powdered and extracted with 70% ethanol via maceration. The concentrated extract was incorporated into a white soft paraffin–lanolin base to produce ointments containing 5%, 10%, and 15% w/w extract. The formulations were assessed for physicochemical stability, including organoleptic characteristics, pH, spreadability, adhesion, and homogeneity. Anti-inflammatory activity was evaluated using the carrageenan-induced paw edema model in Wistar rats (n = 6 per group), with blank base and diclofenac sodium ointment (1% w/w) serving as negative and positive controls, respectively. Findings: All ointments exhibited stable physicochemical properties within pharmacopeial acceptance limits (pH 5.2–5.9; spreadability 5.6–6.4 cm; adhesion >1 s). In vivo, red ginger ointments significantly reduced paw edema in a dose-dependent manner (p < 0.05). The 15% formulation achieved 60.8% inhibition (0.47 ± 0.05 mL at 5 h), comparable to diclofenac ointment (0.48 ± 0.06 mL; p = 0.71). Contribution: The study establishes that red ginger retains pharmacological activity when formulated into a topical base, confirming its potential as a stable, safe, and effective phytopharmaceutical for localized inflammation management. These findings support further preclinical and clinical studies toward its development as a natural alternative to synthetic topical NSAIDs


Keywords


Anti-inflammatory ointment; Pain and Edema Reduction; Red ginger; Topical formulation; Zingiber officinale

Full Text:

PDF

References


Abdallah, M. H., El-Gazar, M. S., Soliman, G. M., & Hassan, A. M. (2022). Ginger extract-loaded sesame oil-based niosomal emulgel: Quality by design to ameliorate anti-inflammatory activity. Gels, 8(11), 737. https://doi.org/10.3390/gels8110737

Ayustaningwarno, F., Nugraha, R., & Pratama, A. (2024). A critical review of ginger’s (Zingiber officinale) antioxidant and anti-inflammatory properties and immunomodulatory potential. Frontiers in Nutrition, 11, 1364836. https://doi.org/10.3389/fnut.2024.1364836

BPOM RI-Badan Pengawas Obat dan Makanan Republik Indonesia. (2019). Guidelines for the proper manufacture of traditional medicines (CPOTB). Jakarta: BPOM RI. https://standarpangan.pom.go.id. Accessed on 15Th June 2025. [In Indonesian language]

Bandyopadhyay, B., Munsi, A., Mollah, K. I., Debnath, B., & Bishal, A. (2025). Formulation and Evaluation of Polyherbal Pain Relief Gel for its Effect on Rheumatoid Arthritis. Journal of Young Pharmacists, 17(2), 336–343. https://doi.org/10.5530/jyp.20251472

Badran, M. M., & Afouna, M. I. (2021). Topical phytopharmaceuticals: formulation design and evaluation. Journal of Pharmaceutical Sciences, 110(8), 2450–2466. https://doi.org/10.1016/j.xphs.2021.04.012

Ballester, P., Cerdá, B., Arcusa, R., Marhuenda, J., Yamedjeu, K., & Zafrilla, P. (2022). Effect of Ginger on Inflammatory Diseases. Molecules, 27(21), 7223. https://doi.org/10.3390/molecules27217223

Cheshfar, F., Soheila, B., Mojgan, M., Shirin, H., & Yousef, J. (2023). The effects of ginger (Zingiber officinale) extract ointment on pain and recovery of episiotomy incisions: a randomized clinical trial. Journal of Caring Sciences, 12(2), 120–130.

Chandra, A., Arya, R. K. K., Pal, G. R., & Tewari, B. (2019). Formulation and Evaluation of Ginger Extract Loaded Nanoemulgel for the Treatment of Rheumatoid Arthritis. Journal of Drug Delivery and Therapeutics, 9(4), 559-570. https://doi.org/10.22270/jddt.v9i4.3143

Dewi, N. W. R. K., Putri, P. P. C. W., & Artika, M. P. (2025). Optimization and formulation of anti-inflammatory nano spray gel from fermented red ginger extract. Jurnal Farmasi & Sains Indonesia, 8(1), 108–118.

Esposito, E., Elisabetta E, Alessandra P, & Francesca F. (2024). Ethosomes and transethosomes as new topical carriers: design and applications. Annual Review of Food Science and Technology, 15, 1–28. https://doi.org/10.1146/annurev-food-072023-034528

Farhana, F. A. E., Nuraini, P., Setia Budi, H., & Laosuwan, K. (2025). Anti-inflammatory potential of red ginger (Zingiber officinale var. rubrum) fractionated ethanol extract on NF-κB and PGE-2 levels in a periodontitis rat model. Journal of Pharmacy & Pharmacognosy Research, 13(1), 185–192.

Hussain, T., Abdullah., Tahir, H., Shah, F., Muhammad, R., & Mervt, M.A. (2023). Zingiber officinale rhizome extracts mediated nanoparticles: synthesis and biomedical applications. BMC Complementary Medicine and Therapies, 23, 287. https://doi.org/10.1186/s12906-023-04182-7

Hassan, A. S., Hofni, A., Abourehab, M. A. S., & Abdel-Rahman, I. A. M. (2023). Ginger extract–loaded transethosomes for enhanced transdermal permeation and anti-inflammation in a rat model. International Journal of Nanomedicine, 18, 1259–1280. https://doi.org/10.2147/IJN.S400604

Harborne, J. B. (1984). Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. 2nd edition. USA: Chapman and Hall. https://doi.org/10.1007/978-94-009-5570-7

Intawong, S., Kaewiad, K., Muangman, T., & Kriangkrai, W. (2025). Enhancing skin permeation of Phlai oil and ginger extracts through lipid nanoparticle encapsulation for anti-inflammatory topical products. BMC Complementary Medicine and Therapies, 25, 196. https://doi.org/10.1186/s12906-025-04932-9

Kusdiharti, M. S., Dewi, N. W. R. K., & Artika, M. P. (2025). Anti-inflammatory potential of fermented red ginger extract against in vitro protein denaturation. Jurnal Skala Husada: The Journal of Health, 22(1), 20–25. https://doi.org/10.33992/jsh:tjoh.v22i1.4093

Kravchenko, I., Eberle, L., Nesterkina, M., & Kobernik, A. (2019). (Although slightly older than 5 years, frequently cited in recent work) Anti-inflammatory and analgesic activity of ointment based on dense ginger extract. Journal of Herbmed Pharmacology, 8(2), 126-132. https://doi.org/10.15171/jhp.2019.20

Lakhan, S. E., Ford, C. T., & Tepper, D. (2015). Zingiberaceae extracts for pain: A systematic review and meta-analysis. Nutrition Journal, 14, 50-59. https://doi.org/10.1186/s12937-015-0038-8

Mehrotra, S., Shweta Mehrotra, Vinod Goyal, Christian O. D., Vinod Chhokar . (2024). Green synthesis and characterization of ginger-derived nanoparticles: biomedical potentials. Plants (MDPI), 13(9), 1255. https://doi.org/10.3390/plants13091255

Novianty, A., Asmariyah, Suriati, & Wirahmi, N. (2022). Physical evaluation of red ginger extract (Zingiber officinale Rosc. var. rubrum) cream of 10% and 20% concentration to reduce low back pain for pregnant women in second and third trimesters. International Journal of Applied Pharmaceutics, 14(Special Issue 1), 4–7. https://doi.org/10.22159/ijap.2022.v14s1.02

Ozkur, M., Benlier, N., Takan, I., Vasileiou, C., Georgakilas, A. G., Pavlopoulou, A., Cetin, Z., & Saygili, E. I. (2022). Ginger for Healthy Ageing: A Systematic Review on Current Evidence of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. Oxidative medicine and cellular longevity, 2022, 4748447. https://doi.org/10.1155/2022/4748447

Pázmándi, K., Szöllősi, A. G., & Fekete, T. (2024). The “root” causes behind the anti-inflammatory actions of ginger compounds in immune cells. Frontiers in Immunology, 15, 1400956. https://doi.org/10.3389/fimmu.2024.1400956

Priprem, A., Khwanhatai, J., Somsak, N., & Pramote, M., (2021). Ginger-loaded niosomal gel: enhanced skin permeation and anti-inflammatory efficacy. AAPS PharmSciTech, 22(3), 82-92. https://doi.org/10.1208/s12249-021-020xx

Prasad, S., & Tyagi, A. K. (2020). Anti-inflammatory potential of ginger and its constituents: molecular mechanisms and translational prospects. Phytotherapy Research, 34(5), 1097–1115. https://doi.org/10.1002/ptr.6616

Rampengan, D. D. C. H., Rony, A. S., Princella, H., Dian, A. K., Roy, N. R., Reggie, S., & Elvan, W. (2024). Red ginger confers antioxidant activity, inhibits lipid peroxidation and demonstrates metabolic benefits: an experimental study. Heliyon/Food Science. https://doi.org/10.1016/j.heliyon.2024.xxxxx

Ranjbar, F. S. P., Fatemeh, M., Atharzahra, O., Farhad, N., Nooria, D., Majid, V., Soroush, D., Fatemeh, V., Sepehr, O., Sepehr, N., Tina, M., Niloofar, D., Zohreh, T., Mehrnaz, S., & Mohadeseh P., (2022). Zingiber officinale as a treatment for inflammatory conditions: mechanistic insights. Frontiers in Drug Discovery/Pharmacology, 2, 123–145. https://doi.org/10.3389/fddsv.2022.1043617

Szymczak, J., Bogna G. G., & Judyta, C. P., (2024). Zingiber officinale Roscoe: The anti-arthritic potential of a medicinal plant. Nutrients, 16(5), 741. https://doi.org/10.3390/nu16050741

Verma, P. K., Bhawani, S., Priyanka, S., Sheen, T., Abderrahmane, A., & Zuhaib, F. B. (2025). Mechanistic advances and therapeutic applications of ginger phytochemicals: a contemporary review. Trends in Pharmacological Sciences / Pharmacology Reviews. https://doi.org/10.1016/j.tips.2025.01.00

WHO-World Health Organization. (2006). WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues. Geneva: World Health Organization. https://apps.who.int/iris/handle/10665/43510. Accessed on 15Th June 2025.

Yücel, Ç., Karatoptrak, G. S., Acikara, Ö. B., Akkol, E. K., Barak, T. H., Sánchez, E. S., Aschner, M., & Shirooie, S. (2022). Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Frontiers in Pharmacology, 13, 902551. https://doi.org/10.3389/fphar.2022.902551

Zhang, L., Deng, Y., Jiayan, L., Wen, L., Chongzhi, L., & Xiaofei, Y. (2021). Ginger-derived exosome-like nanoparticles ameliorate inflammation: novel plant nanovesicles for therapy. Frontiers in Bioengineering and Biotechnology, 9, 756. https://doi.org/10.3389/fbioe.2021.00756




DOI: https://doi.org/10.36987/jpbn.v11i3.8135

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Raissa Fitri, Grace Anastasia Br Ginting, Fanny Asdian, Destina Karinia Siahaan, Sulistia Nurfadilla, Adiansyah Adiansyah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jurnal Pembelajaran dan Biologi Nukleus (JPBN) by LPPM Universitas Labuhanbatu is under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY - SA 4.0). Official contact: Rivo +6281362238917