Effect of BAP and 2,4-D Combination on the Callus Induction of Robusta Coffee (Coffea canephora Pierre ex A.Froehner) Leaf Explants
Abstract
Background: Sustainable production of Robusta coffee (Coffea canephora) is constrained by the limited availability of high-quality planting materials, while information regarding the optimal auxin–cytokinin combinations for initiating callus cultures remains insufficient. Accordingly, this study was conducted to examine the effects of combined applications of benzyl amino purine (BAP) and 2,4-dichlorophenoxyacetic acid (2,4-D) on callus induction and subsequent growth derived from young leaf explants of Robusta coffee. Methodology: Explant cultures were established on Murashige and Skoog (MS) medium enriched with different concentrations of 2,4-D (1, 1.5, and 2 ppm) in combination with BAP (1.5, 2, and 2.5 ppm), arranged in a completely randomized design with three replications. Data collection was conducted throughout a 30-day incubation period and included measurements of callus initiation time (days), callus formation percentage, callus growth intensity, and callus morphological features. The resulting data were analyzed statistically using analysis of variance (ANOVA), followed by the Kruskal–Wallis test. Findings: Result describe that the treatment combining 2,4-D at 1 ppm with BAP at 1.5 ppm produced the most favorable response, as indicated by the shortest callus initiation period (7.33 DAP). In contrast, the application of 2,4-D at 1 ppm in combination with BAP at 2.5 ppm achieved a 100% callus induction rate and the highest callus growth intensity (2 on a 5-point scale), along with a compact callus exhibiting a yellowish-green coloration. Overall, these results highlight the critical influence of auxin–cytokinin equilibrium in enhancing callus induction in Robusta coffee and underscore its significance as a foundational reference for establishing an efficient in vitro propagation strategy. Contribution: In general, this study contributes to providing important technical information supporting the large-scale and sustainable production of high-quality Robusta coffee seedlings
Keywords
Full Text:
PDFReferences
Arimarsetiowati, R., Putra, A. C. D. S., Suwastono, M. R., Umami, L. A., Daryono, B. S., Astuti, Y. T. M., & Semiarti, E. (2023). The effect of 2,4-D, thidiazuron and BAP on calli induction of arabica coffee (Coffea arabica L.). IOP Conference Series: Earth and Environmental Science, 1133(1), 012010. https://doi.org/10.1088/1755-1315/1133/1/012010
Ashokhan, S., Othman, R., Rahim, M. H. A., Karsani, S. A., & Yaacob, J. S. (2020). Effect of plant growth regulators on coloured callus formation and accumulation of azadirachtin, an essential biopesticide in Azadirachta indica. Plants, 9(3), 352. https://doi.org/10.3390/plants9030352
Avila-Victor, C. M., Arjona-Suárez, E. de J., Iracheta-Donjuan, L., Valdez-Carrasco, J. M., Gómez-Merino, F. C., & Robledo-Paz, A. (2023a). Callus Type, Growth Regulators, and Phytagel on Indirect Somatic Embryogenesis of Coffee (Coffea arabica L. var. Colombia). Plants, 12(20), 3570. https://doi.org/10.3390/plants12203570
Avila-Victor, C. M., Ordaz-Chaparro, V. M., Arjona-Suárez, E. de J., Iracheta-Donjuan, L., Gómez-Merino, F. C., & Robledo-Paz, A. (2023b). In Vitro Mass Propagation of Coffee Plants (Coffea arabica L. var. Colombia) through Indirect Somatic Embryogenesis. Plants, 12(6), 1–13. https://doi.org/10.3390/plants12061237
Avilez-Montalvo, J. R., Quintana-Escobar, A. O., Méndez-Hernández, H. A., Aguilar-Hernández, V., Brito-Argáez, L., Galaz-Ávalos, R. M., Uc-Chuc, M. A., & Loyola-Vargas, V. M. (2022). Auxin-Cytokinin Cross Talk in Somatic Embryogenesis of Coffea canephora. Plants, 11(15), 2013. https://doi.org/10.3390/plants11152013
Blinstrubiene, A., Burbulis, N., Juškevičiute, N., Vaitkevičiene, N., & Žukiene, R. (2020). Effect of growth regulators on Stevia rebaudiana bertoni callus genesis and influence of auxin and proline to steviol glycosides, phenols, flavonoids accumulation, and antioxidant activity in vitro. Molecules, 25(12), 2759. https://doi.org/10.3390/molecules25122759
Carsono, N., Juwendah, E., Liberty, Sari, S., Damayanti, F., & Rachmadi, M. (2021). Optimize 2,4-D concentration and callus induction time enhance callus proliferation and plant regeneration of three rice genotypes. Biodiversitas, 22(7), 2555–2560. https://doi.org/10.13057/biodiv/d220702
Chitphet, P., Sanevas, N., Vuttipongchaikij, S., & Wongkantrakorn, N. (2025). An Effective Protocol for Callus Induction and Plant Regeneration in an Indica Rice Cultivar RD43. International Journal of Plant Biology, 16(2), 2–9. https://doi.org/10.3390/ijpb16020048
Clapa, D., Hârţa, M., Radomir, A. M., Peticilă, A. G., Leopold, L., Ranga, F., & Sumedrea, D. I. (2025). Effects of Culture Period and Plant Growth Regulators on In Vitro Biomass Production and Phenolic Compounds in Seven Species of Hypericum. Plants, 14(15), 1–18. https://doi.org/10.3390/plants14152437
Di Bonaventura, A., Marchetti, S., Petrussa, E., Braidot, E., Colomban, S., Navarini, L., & Zancani, M. (2024). A protocol for the development and maintenance of Coffea arabica (L.) cell suspension cultures. Plant Cell, Tissue and Organ Culture, 158(48), 9. https://doi.org/10.1007/s11240-024-02848-9
Eoh, M. (2021). Quality and Quantity of Callus in Bengal Grass (Panicum maximum) Culture Induced with a Combination of Auxin and Cytokinin. Agrinimal Jurnal Ilmu Ternak Dan Tanaman, 9(1), 27–35. [In Indonesian language]
Guo, M., Yu, Q., Li, D., Xu, K., Di, Z., Zhang, Y., Yu, Y., Zheng, J., & Zhang, Y. (2023). In vitro propagation, shoot regeneration, callus induction, and suspension from lamina explants of Sorbus caloneura. Forestry Research, 3(7), 1-8. https://doi.org/10.48130/FR-2023-0007
Habibah, N. A., Moeljopawiro, S., Dewi, K., & Indrianto, A. (2018). Callus induction and flavonoid production on the immature seed of Stelechocarpus burahol. Journal of Physics: Conference Series, 983(1), 012186. https://doi.org/10.1088/1742-6596/983/1/012186
Habibah, N. A., Lutfiah, A., Liana, A., Tunjung, W. A. S., Indrowati, M., & Pa’ee, F. (2023). Callogenesis of Dayak Onion (Eleutherine palmifolia) Bulb in response of Picloram, 2,4-D, and Kinetin. Biosaintifika, 15(2), 270–280. https://doi.org/10.15294/biosaintifika.v15i2.46501
Hasnain, A., Naqvi, S. A. H., Ayesha, S. I., Khalid, F., Ellahi, M., Iqbal, S., Hassan, M. Z., Abbas, A., Adamski, R., Markowska, D., Baazeem, A., Mustafa, G., Moustafa, M., Hasan, M. E., & Abdelhamid, M. M. A. (2022). Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Frontiers in Plant Science, 13, 1009395. https://doi.org/10.3389/fpls.2022.1009395
Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: Mechanisms of induction and repression. Plant Cell, 25(9), 3159–3173. https://doi.org/10.1105/tpc.113.116053
Kaban, S. M. P., Restiani, R., & Aditiyarini, D. (2024). Effect of Plant Growth Regulators (PGRs) on Biomass and Flavonoid Production of Talinum paniculatum Callus Culture. Jurnal Biodjati, 9(1), 11–25. https://doi.org/10.15575/biodjati.v9i1.33788
Méndez-Hernández, H. A., Galaz-Ávalos, R. M., Quintana-Escobar, A. O., Pech-Hoil, R., Collí-Rodríguez, A. M., Salas-Peraza, I. Q., & Loyola-Vargas, V. M. (2023). In Vitro Conversion of Coffea spp. Somatic Embryos in SETISTM Bioreactor System. Plants, 12(17), 3055. https://doi.org/10.3390/plants12173055
Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Pasternak, T. P. (2024). Plant Growth Regulation in Cell and Tissue Culture In Vitro. Plants, 13(327), 1–24. https://doi.org/10.3390/plants13020327
Purba, R. V., Yuswanti, H., & Astawa, I. N. G. (2017). Induction of Callus from Grapevine Leaf Explants (Vitis vinifera L.) with In Vitro Application of 2,4-D. Jurnal Agroekoteknologi Tropika (Journal of Tropical Agroecotechnology), 6(2), 218–228. https://ojs.unud.ac.id/index.php/jat/article/view/30895 [In Indonesian language]
Qiu, Y., Guan, S. C., Wen, C., Li, P., Gao, Z., & Chen, X. (2019). Auxin and cytokinin coordinate the dormancy and outgrowth of axillary bud in strawberry runner. BMC Plant Biology, 19(1), 1–16. https://doi.org/10.1186/s12870-019-2151-x
Rasud, Y., & Bustaman, B. (2020). In Vitro Callus Induction from Clove (Syzigium aromaticum L.) Leaves on Medium Containing Various Auxin Concentrations. Jurnal Ilmu Pertanian Indonesia, 25(1), 67–72. https://doi.org/10.18343/jipi.25.1.67
Restiani, R., Dolonseda, A. C., Kaban, S. M. P., Hutabarat, C. T., Sekar, A. A., Meliana, F. A., Linardi, M., Verrell, N., & KY, A. A. B. (2022). Efficient Callus and Shoot Induction Protocol from Leaf and Node Explants of Javanese Ginseng (Talinum paniculatum (Jacq.) Gaertn.). Scholars Journal of Agriculture and Veterinary Sciences, 9(12), 223–231. https://doi.org/10.36347/sjavs.2022.v09i12.003
Robles-Martínez, M., Barba-De la Rosa, A. P., Guéraud, F., Negre-Salvayre, A., Rossignol, M., & Santos-Díaz, M. D. S. (2016). Establishment of callus and cell suspensions of wild and domesticated Opuntia species: study on their potential as a source of metabolite production. Plant Cell, Tissue and Organ Culture, 124(1), 181–189. https://doi.org/10.1007/s11240-015-0886-0
Rybin, D. A., Sukhova, A. A., Syomin, A. A., Zdobnova, T. A., Berezina, E. V., & Brilkina, A. A. (2024). Characteristics of Callus and Cell Suspension Cultures of Highbush Blueberry (Vaccinium corymbosum L.) Cultivated in the Presence of Different Concentrations of 2,4-D and BAP in a Nutrient Medium. Plants, 13(23), 3279. https://doi.org/10.3390/plants13233279
Saleem, Y., Emad, M. Z., Ali, A., & Naz, S. (2022). Synergetic Effect of Different Plant Growth Regulators on Micropropagation of Sugarcane (Saccharum officinarum L.) by Callogenesis. Agriculture (Switzerland), 12(11), 1812. https://doi.org/10.3390/agriculture12111812
Sari, Y. P., Kusumawati, E., Saleh, C., Kustiawan, W., & Sukartingsih, S. (2018). Effect of sucrose and plant growth regulators on callogenesis and preliminary secondary metabolic of different explant Myrmecodia tuberosa. Nusantara Bioscience, 10(3), 183–192. https://doi.org/10.13057/nusbiosci/n100309
Sun, Y., Yan, L., Zhang, A., Yang, J., Zhao, Q., Lin, X., Zhang, Z., Huang, L., Wang, X., & Wang, X. (2024). Effects of Grafting on the Structure and Function of Coffee Rhizosphere Microbiome. Agriculture (Switzerland), 14(10), 1854. https://doi.org/10.3390/agriculture14101854
Wijaya, R., Restiani, R., & Aditiyarini, D. (2020). The Effect of Chitosan on Saponin Production in Java Ginseng Leaf Callus Culture (Talinum paniculatum (Jacq.) Gaertn.). Proceeding of Seminar Nasional Biologi Di Era Pandemi Covid-19, September, 252–261. file:///C:/Users/Asus/Downloads/15858-ArticleText-44436-3-10-20201028.pdf. Accessed on 17Th August 2025 [In Indonesian language]
Wójcik, A. M., Wójcikowska, B., & Gaj, M. D. (2020). Current perspectives on the auxin-mediated genetic network that controls the induction of somatic embryogenesis in plants. International Journal of Molecular Sciences, 21(4), 1–19. https://doi.org/10.3390/ijms21041333
Yulia, E., Baiti, N., Handayani, R. S., & Nilahayati, N. (2020). Response of Several Concentrations of BAP and IAA to the Growth of Cymbidium Orchid Subcultures (Cymbidium finlaysonianum Lindl.) in Vitro. Jurnal Agrium, 17(2), 156-165. https://doi.org/10.29103/agrium.v17i2.5870 [In Indonesian language]
DOI: https://doi.org/10.36987/jpbn.v11i4.8338
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Yovita Angeline Wijaya, Ratih Restiani, Aniek Prasetyaningsih

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Pembelajaran dan Biologi Nukleus (JPBN) by LPPM Universitas Labuhanbatu is under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY - SA 4.0). Official contact: Rivo +6281362238917








