INITIAL EVALUATION OF THE RISKS OF CHILD WELFARE INVOLVEMENT FOR PREVENTIVE MEASURES
Abstract
Untuk mencegah keterlibatan anak dalam sistem kesejahteraan dengan segera melibatkan keluarga ke intervensi preventif, penting untuk mengidentifikasi risiko keterlibatan ini di masyarakat umum sedini mungkin. Penelitian ini bertujuan untuk mengidentifikasi faktor-faktor demografi, sosial ekonomi, dan riwayat kriminal yang terkait dengan keterlibatan anak dalam sistem kesejahteraan. Kami mengumpulkan data antropometri dari 120.641 anak berusia di bawah 15 tahun serta data dari orang tua mereka (81.453 ibu dan 68.202 ayah) melalui Badan Pusat Statistik. Keterlibatan anak dalam kesejahteraan mencakup perintah pengawasan, perwalian yang ditetapkan pengadilan, atau penempatan di luar rumah yang dimulai dalam satu tahun setelah penilaian faktor risiko. Validitas prediktif keterlibatan ini dinilai dengan menghitung nilai AUC untuk setiap faktor risiko. Kami mengembangkan algoritma prediktif berbasis pohon keputusan dan melakukan validasi dengan menggunakan sampel terpisah. Hasil penelitian menunjukkan bahwa satu tahun setelah penilaian, keterlibatan anak dalam sistem kesejahteraan dapat diprediksi secara akurat dengan kombinasi faktor-faktor tertentu pada tingkat individu. Risiko ini meningkat secara signifikan dengan bertambahnya jumlah faktor risiko. Anak-anak yang memiliki empat atau lebih faktor risiko memiliki peluang sepuluh kali lipat untuk terlibat dalam sistem kesejahteraan anak, sementara enam atau lebih faktor risiko meningkatkan risiko ini hingga 21 kali lipat dibandingkan dengan anak-anak tanpa faktor risiko. Semakin banyak faktor risiko yang terakumulasi, model prediktif menunjukkan peningkatan kemungkinan keterlibatan dalam sistem kesejahteraan anak. Nilai AUC yang tinggi dalam model prediktif dan akumulasi faktor risiko ini dapat membantu praktisi memperkirakan kebutuhan untuk merujuk keluarga ke intervensi pencegahan secara tepat waktu
Full Text:
PDFReferences
Ghahramani, A., & Amirbahmani, A. (2022). A qualitative investigation to discover causes of occupational injuries and preventive countermeasures in manufacturing companies. Heliyon, 8(9), e10501. https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e10501
Graham, A. M., Doyle, O., Tilden, E. L., Sullivan, E. L., Gustafsson, H. C., Marr, M., Allen, M., & Mackiewicz Seghete, K. L. (2022). Effects of Maternal Psychological Stress During Pregnancy on Offspring Brain Development: Considering the Role of Inflammation and Potential for Preventive Intervention. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(5), 461–470. https://doi.org/https://doi.org/10.1016/j.bpsc.2021.10.012
Huang, L., Dong, D., & Dong, X. (2023). Natural resources extraction, financial expansion and remittances: South Asian economies perspective of sustainable development. Resources Policy, 84, 103767. https://doi.org/https://doi.org/10.1016/j.resourpol.2023.103767
Huang, S., & Li, C. (2024). Coordination of preventive, emergency and restoration dispatch against cascading failures for resilience enhancement. International Journal of Electrical Power & Energy Systems, 160, 110136. https://doi.org/https://doi.org/10.1016/j.ijepes.2024.110136
Kaewbumrung, M., Plengsa-Ard, C., Pansang, S., & Palasai, W. (2024). Preventive maintenance of horizontal wind turbines via computational fluid dynamics-driven wall shear stress evaluation. Results in Engineering, 22, 102383. https://doi.org/https://doi.org/10.1016/j.rineng.2024.102383
Laroche, E. (2024). Management practices that promote preventive measures compliance: A comparative analysis between hospital healthcare workers and teachers. Safety Science, 177, 106591. https://doi.org/https://doi.org/10.1016/j.ssci.2024.106591
Meng, X., Li, H., Zhang, W., Zhou, X.-Y., & Yang, X. (2024). Analyzing risk influencing factors of ship collision accidents: A data-driven Bayesian network model integrating physical knowledge. Ocean & Coastal Management, 256, 107311. https://doi.org/https://doi.org/10.1016/j.ocecoaman.2024.107311
Orringer, C. E., Blaha, M. J., Blankstein, R., Budoff, M. J., Goldberg, R. B., Gill, E. A., Maki, K. C., Mehta, L., & Jacobson, T. A. (2021). The National Lipid Association scientific statement on coronary artery calcium scoring to guide preventive strategies for ASCVD risk reduction. Journal of Clinical Lipidology, 15(1), 33–60. https://doi.org/https://doi.org/10.1016/j.jacl.2020.12.005
Paez-Trujillo, A. M., Hernandez-Suarez, J. S., Alfonso, L., Hernandez, B., Maskey, S., & Solomatine, D. (2024). An optimisation approach for planning preventive drought management measures. Science of The Total Environment, 948, 174842. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.174842
Rathod, R., & Rani, A. (2024). A framework for national-level prevention initiatives in Indian schools: A risk reduction approach. Mental Health & Prevention, 34, 200334. https://doi.org/https://doi.org/10.1016/j.mhp.2024.200334
Röben, T., van Oostrom, S., Benning, F., Smit, D., & Proper, K. (2024). Preventive health measures in small and medium-sized enterprises: A scoping review on implementation strategies. Applied Ergonomics, 119, 104303. https://doi.org/https://doi.org/10.1016/j.apergo.2024.104303
Roghani, M., Ghaedi, G., Iranzadeh, S., Golezar, M. H., & Afshinmajd, S. (2024). Efficacy and safety of venlafaxine versus nortriptyline for the preventive treatment of migraine: A double-blind randomized clinical trial. Clinical Neurology and Neurosurgery, 243, 108400. https://doi.org/https://doi.org/10.1016/j.clineuro.2024.108400
Shan, W., Yu Quan, J. C., Wang, Z., Sharma, A., Ng, A. B., & See, S. (2024). Examining the cultural influence on online stances towards COVID-19 preventive measures and their impact on incidence and mortality: A global stance detection analysis of tweets. SSM - Population Health, 26, 101679. https://doi.org/https://doi.org/10.1016/j.ssmph.2024.101679
Stoev, S. D. (2024). Food security, underestimated hazard of joint mycotoxin exposure and management of the risk of mycotoxin contamination. Food Control, 159, 110235. https://doi.org/https://doi.org/10.1016/j.foodcont.2023.110235
Tian, Q., & Wang, H. (2022). Optimization of preventive maintenance schedule of subway train components based on a game model from the perspective of failure risk. Sustainable Cities and Society, 81, 103819. https://doi.org/https://doi.org/10.1016/j.scs.2022.103819
Wu, Y. P., Aspinwall, L. G., Conn, B. M., Stump, T., Grahmann, B., & Leachman, S. A. (2016). A systematic review of interventions to improve adherence to melanoma preventive behaviors for individuals at elevated risk. Preventive Medicine, 88, 153–167. https://doi.org/https://doi.org/10.1016/j.ypmed.2016.04.010
Yuan, Z., Ding, C., Duan, J., Lian, R., Shi, Y., Han, J., Dong, H., Song, Y., Zhao, J., & Fan, X. (2024). Longitudinal cohort study highlights cancer-preventive benefits of lipid-lowering drugs. IScience, 27(9), 110680. https://doi.org/https://doi.org/10.1016/j.isci.2024.110680
DOI: https://doi.org/10.36987/jes.v11i2.6149
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Suci Fajrina
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.