Implementation of the K-Mean Algorithm to Determine the Level of Student Satisfaction with the Online Learning Uhamka System (OLU)
Abstract
The Covid-19 pandemic has had a negative impact on humans not only in health but also in the economy, social and education. Schools and colleges were closed so that learning that was originally carried out face-to-face was shifted to long distance learning (LdL). LdL implementation can be carried out synchronously and asynchronously. There are obstacles in learning using the Online Learning Uhamka (OLU), namely the effectiveness of using the Online Learning Uhamka (OLU) and the application of the k-means algorithm to determine the level of student satisfaction with the Online Learning Uhamka (OLU) system and the reliability of the k-means algorithm in clustering .One technique to measure the level of satisfaction is to use clustering techniques. The advantage of the clustering technique is that it is easy to adapt, imply and execute and is commonly used in various fields. One of the clustering techniques that is often used is the k-means algorithm. There are 2 clusters used in the k-means algorithm. Clustering results using the Kmeans algorithm showed that 309 respondents belonged to cluster 1, namely satisfied, and 94 respondents belonged to cluster 2, namely dissatisfied. The indicators used to assess satisfaction are usability, content quality, interaction quality. Of the three assessment indicators that have the lowest score is the interaction quality indicator with the centroid value in cluster 1, namely 19.33980583 and the centroid value in cluster 2, namely 14.08510638. The results of the Kmeans algorithm reliability test by calculating the Davies Bouldin index value are good enough in clustering data. The Davies Bouldin index value is 0.3806830859.
Full Text:
PDFReferences
A. Aldiab, H. Chowdhury, A. Kootsookos, F. Alam, and H. Allhibi, “Utilization of Learning Management Systems (LMSs) in higher education system: A case review for Saudi Arabia,†Energy Procedia, vol. 160, no. 2018, pp. 731–737, 2019, doi: 10.1016/j.egypro.2019.02.186.
A. Rohman and M. Rochcham, “Implementasi Algoritma K-Means Untuk Clustering Kepuasan Mahasiswa Terhadap Pelayanan Akademik,†J. Fak. Tek. Univ. Pandanaran, vol. 6, no. 2, pp. 42–45, 2020, [Online]. Available: http://jurnal.unpand.ac.id/index.php/NT/article/viewFile/1646/1593.
Y. Apriliani, M. Missriani, and D. Wardiah, “Evaluasi Penggunaan Aplikasi LMS Schoology dalam Pembelajaran Bahasa Indonesia Secara Daring,†JRTI (Jurnal Ris. Tindakan Indones., vol. 6, no. 2, p. 157, 2021, doi: 10.29210/3003988000.
F. P. U. Dewi, “Pemanfaatan fitur learning management system (LMS) dalam pembelajaran jarak jauh (studi kasus pada guru matematika SMK kelompok teknik Kabupaten Klaten),†Pros. Semin. Nas. Mat. dan …, no. 1, pp. 77–83, 2021, [Online]. Available: http://conference.upgris.ac.id/index.php/senatik/article/view/1815.
N. A. Larasati and S. Andayani, “Pengaruh Penggunaan Learning Management System (LMS) Terhadap Tingkat Kepuasan Mahasiswa Menggunakan Metode DeLone and McLean,†J. Tek. Inform. UNIKA St. Thomas, vol. 4, no. 1, pp. 13–20, 2019.
W. Abas, “Analisa Kepuasan Mahasiswa Terhadap Website Universitas Negeri Yogyakarta (UNY),†Manajemen, pp. 1–6, 2013.
N. Q. Nada and S. Wibowo, “Pengukuran Kualitas Layanan Sistem Informasi Akademik,†J. Inform. Upgris, vol. 1, no. 1, pp. 122–131, 2016.
A. T. Wibowo, I. Akhlis, and S. E. Nugroho, “Pengembangan LMS (Learning Management System) Berbasis Web untuk Mengukur Pemahaman Konsep dan Karakter Siswa,†Sci. J. Informatics, vol. 1, no. 2, pp. 127–137, 2015, [Online]. Available: https://journal.unnes.ac.id/nju/index.php/sji/article/view/4019/3633.
E. Retnoningsih, “Mengukur Tingkat Kepuasan Penggunaan Learning Management System Dalam Knowledge Sharing,†pp. 6–8, 2015.
R. D. Dana, C. L. Rohmat, and A. R. Rinaldi, “Strategi Marketing Penerimaan Mahasiswa Baru Menggunakan Machine Learning dengan Teknik Clustering,†J. Pengemb. IT, vol. 04, no. 2, pp. 201–204, 2018, doi: 10.30591/jpit.v4i2-2.1879.
A. K. Jain, “Data clustering: 50 years beyond K-means,†Pattern Recognit. Lett., vol. 31, no. 8, pp. 651–666, 2010, doi: 10.1016/j.patrec.2009.09.011.
L. Hakim and Y. P. Santoso, “Penilaian Kinerja Dosen Tetap Menggunakan K-Mean Clustering Pada Universitas XYZ,†J. Inform. dan Komputasi, vol. 13, no. August, pp. 87–94, 2019.
Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 di Provinsi Lampung dengan Algoritma K-Means,†J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI.
J. Suryanto, “Analisa Perbandingan Pengelompokkan Curah Hujan 15 Harian Provinsi Diy Menggunakan Fuzzy Clustering Dan K-Means Clustering,†J. AGRIFOR, vol. XVI, pp. 229–242, 2017.
A. Winarta and W. J. Kurniawan, “Optimasi cluster k-means menggunakan metode elbow pada data pengguna narkoba dengan pemrograman python,†J. Tek. Inform. Kaputama, vol. 5, no. 1, pp. 113–119, 2021.
D. Jollyta, S. Efendi, M. Zarlis, and H. Mawengkang, “Optimasi Cluster pada Data Stunting: Teknik Evaluasi Cluster Sum of Square Error dan Davies Bouldin Index,†Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 918, 2019, doi: 10.30645/senaris.v1i0.100.
A. Moubayed, M. Injadat, A. Shami, and H. Lutfiyya, “Student Engagement Level in an e-Learning Environment: Clustering Using K-means,†Am. J. Distance Educ., vol. 34, no. 2, pp. 137–156, 2020, doi: 10.1080/08923647.2020.1696140.
K. D. R. Sianipar, S. W. Siahaan, M. Siregar, and P. P. P. A. N. W. F. I. R. H. Zer, “Penerapan Algoritma K-Means Dalam Menentukan Tingkat Kepuasan Mahasiswa Terhadap Pembelajaran Online,†Infomatek, vol. 22, no. 1, pp. 23–30, 2020, doi: 10.23969/infomatek.v22i1.2748.
B. Darma, Statistika Penelitian Menggunakan SPSS (Uji Validitas, Uji Reliabilitas, Regresi Linier Sederhana, Regresi Linier Berganda, Uji t, Uji F, R2). Guepedia, 2021.
F. Yusup, “Uji Validitas dan Reliabilitas Instrumen Penelitian Kuantitatif,†J. Tarb. J. Ilm. Kependidikan, vol. 7, no. 1, pp. 53–59, 2018, doi: 10.21831/jorpres.v13i1.12884.
N. Putu, E. Merliana, and A. J. Santoso, “Analisa Penentuan Jumlah Cluster Terbaik pada Metode K-Means,†pp. 978–979, 2015.
DOI: https://doi.org/10.36987/jpms.v9i1.4121
Refbacks
- There are currently no refbacks.
JURNAL PEMBELAJARAN DAN MATEMATIKA SIGMA (JPMS)
Indexed by:
JPMS (JURNAL PEMBELAJARAN DAN MATEMATIKA SIGMA) oleh Universitas Labuhanbatu disebarluaskan dibawah Lisensi Creative Commons Atribusi-NonKomersial-BerbagiSerupa 4.0 Internasional.