Penggunaan Memetic Algorithm Pada Penjadwalan Mesin untuk Meminimumkan Emisi Karbon
Abstract
Isu lingkungan merupakan topik penelitian yang sering dilakukan akhir-akhir ini, salah isu tersebut adalah adalah emisi karbon. Salah satu gas emisi karbon terbesar muncul dari tindakan-tindakan manusia seperti transportasi, pertambangan, aktifitas konstruksi dan industri. Dari sisi operasional, strategi penjadwalan terbukti secara signifikan mengurangi emisi karbon. Strategi ini dianggap lebih efektif dan rendah biaya. Flexible Job Shop adalah salah satu jenis penjadwalan mesin pada industri dan merupakan pengembangan dari Job Shop. Kebanyakan penelitian terkait Flexible Job Shop menggunakan waktu pemerosesan bilangan crisp, pada kenyataannya faktor keterlibatan manusia, kerusakan mesin, maupun penurunan kinerja mesin mengakibatkan adanya ketidakpastian pada waktu pemerosesan pekerjaan, penelitian ini akan menyelesaikan Penjadwalan Flexible Job Shop dimana waktu pemerosesan dalam bentuk bilangan grey dengan dua fungsi tujuan yaitu makespan dan emisi karbon. Memetic Algorithm yaitu kombinasi algoritma NSGA-II dan Tabu Search digunakan untuk menyelesaikan kasus ini, hasil yang diproleh kombinasi algoritma ini memberikan hasil yang lebih baik dibandingkan penggunaan satu algoritma.
Full Text:
PDFReferences
C. Destouet, H. Tlahig, B. Bettayeb, and B. Mazari, "Flexible job shop scheduling problem under Industry 5.0: A survey on human reintegration, environmental consideration and resilience improvement," Journal of Manufacturing Systems, vol. 67, pp. 155-173, 2023.
B. Dong et al., "Carbon emissions, the industrial structure and economic growth: Evidence from heterogeneous industries in China," Environmental Pollution, vol. 262, p. 114322, 2020.
H. Piroozfard, K. Y. Wong, and W. P. Wong, "Minimizing total carbon footprint and total late work criterion in flexible job shop scheduling by using an improved multi-objective genetic algorithm," Resources, Conservation and Recycling, vol. 128, pp. 267-283, 2018.
R. Buddala and S. S. Mahapatra, "An integrated approach for scheduling flexible job-shop using teaching–learning-based optimization method," Journal of Industrial Engineering International, vol. 15, no. 1, pp. 181-192, 2019.
P. Wojakowski, "Research study of state-of-the-art algorithms for flexible job-shop scheduling problem," Czasopismo Techniczne, vol. 2013, no. Mechanika Zeszyt 1-M (5) 2013, pp. 381-388, 2013.
M. Hassanchokami, A. Vital-Soto, and J. Olivares-Aguila, "The Role of Environmental Factors in the Flexible Job-Shop Scheduling Problem: A Literature Review," IFAC-PapersOnLine, vol. 55, no. 10, pp. 175-180, 2022.
W. Xu, Y. Hu, W. Luo, L. Wang, and R. Wu, "A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission," Computers & Industrial Engineering, vol. 157, p. 107318, 2021.
J. J. Palacios, M. A. González, C. R. Vela, I. González-RodrÃguez, and J. Puente, "Genetic tabu search for the fuzzy flexible job shop problem," Computers & Operations Research, vol. 54, pp. 74-89, 2015.
A. S. Khuman, "The similarities and divergences between grey and fuzzy theory," Expert Systems with Applications, vol. 186, p. 115812, 2021.
N. Xie and N. Chen, "Flexible job shop scheduling problem with interval grey processing time," Applied Soft Computing, vol. 70, pp. 513-524, 2018.
X. Kong, Y. Yao, W. Yang, Z. Yang, and J. Su, "Solving the flexible job shop scheduling problem using a discrete improved grey wolf optimization algorithm," Machines, vol. 10, no. 11, p. 1100, 2022.
L. Yin, X. Li, L. Gao, C. Lu, and Z. Zhang, "A novel mathematical model and multi-objective method for the low-carbon flexible job shop scheduling problem," Sustainable Computing: Informatics and Systems, vol. 13, pp. 15-30, 2017.
G. Zhang, L. Gao, and Y. Shi, "An effective genetic algorithm for the flexible job-shop scheduling problem," Expert Systems with Applications, vol. 38, no. 4, pp. 3563-3573, 2011.
R. Zarrouk, I. E. Bennour, and A. Jemai, "A two-level particle swarm optimization algorithm for the flexible job shop scheduling problem," Swarm Intelligence, vol. 13, pp. 145-168, 2019.
B. Girish and N. Jawahar, "A particle swarm optimization algorithm for flexible job shop scheduling problem," in 2009 IEEE international conference on automation science and engineering, 2009, pp. 298-303: IEEE.
L.-N. Xing, Y.-W. Chen, P. Wang, Q.-S. Zhao, and J. Xiong, "A knowledge-based ant colony optimization for flexible job shop scheduling problems," Applied Soft Computing, vol. 10, no. 3, pp. 888-896, 2010.
K. C. W. Lim, L.-P. Wong, and J. F. Chin, "Simulated-annealing-based hyper-heuristic for flexible job-shop scheduling," Engineering Optimization, vol. 55, no. 10, pp. 1635-1651, 2023.
M. Saidi-Mehrabad and P. Fattahi, "Flexible job shop scheduling with tabu search algorithms," The international journal of Advanced Manufacturing technology, vol. 32, pp. 563-570, 2007.
G. Zhang, J. Sun, X. Lu, and H. Zhang, "An improved memetic algorithm for the flexible job shop scheduling problem with transportation times," Measurement and Control, vol. 53, no. 7-8, pp. 1518-1528, 2020.
J. Xie, L. Gao, K. Peng, X. Li, and H. Li, "Review on flexible job shop scheduling," IET collaborative intelligent manufacturing, vol. 1, no. 3, pp. 67-77, 2019.
S. Wang, J. Li, H. Tang, and J. Wang, "CEA-FJSP: Carbon emission-aware flexible job-shop scheduling based on deep reinforcement learning," Frontiers in Environmental Science, vol. 10, p. 1059451, 2022.
DOI: https://doi.org/10.36987/jpms.v10i1.5121
Refbacks
- There are currently no refbacks.
JURNAL PEMBELAJARAN DAN MATEMATIKA SIGMA (JPMS)
Indexed by:
JPMS (JURNAL PEMBELAJARAN DAN MATEMATIKA SIGMA) oleh Universitas Labuhanbatu disebarluaskan dibawah Lisensi Creative Commons Atribusi-NonKomersial-BerbagiSerupa 4.0 Internasional.